期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于数据分解的AQI的CEEMD-Elman神经网络预测研究 被引量:4
1
作者 吴曼曼 徐建新 王钦 《中国环境科学》 EI CAS CSCD 北大核心 2019年第11期4580-4588,共9页
针对Elman神经网络在预测空气质量指数(AQI)时易受到数据非平稳性的影响导致预测趋势良好但准确度较低的问题,提出以互补集合经验模态分解(Complementary Ensemble Empirical Mode Decomposition,CEEMD)为基础的CEEMD-Elman模型.应用CE... 针对Elman神经网络在预测空气质量指数(AQI)时易受到数据非平稳性的影响导致预测趋势良好但准确度较低的问题,提出以互补集合经验模态分解(Complementary Ensemble Empirical Mode Decomposition,CEEMD)为基础的CEEMD-Elman模型.应用CEEMD对AQI序列分解成不同时间尺度上的本征模态函数分量和剩余分量,进而首次将对非平稳的AQI序列的预测研究转化为对多个平稳的本征模态函数分量的研究.分别与Elman单一模型、EMD-Elman模型、BP单一模型及CEEMD-BP模型进行实验对比.结果表明:应用该方法建立的模型的均方误差、平均绝对误差和平均绝对百分比误差分别为4.80、0.71、1.84%,均小于其他模型结果;对应空气质量等级预报正确天数的频率为94.12%.该模型能有效的降低非平稳性对实验预测结果的影响,实现对空气质量等级的准确预报;该研究为进一步预测AQI的走向提供了有效依据,也为政府决策和管理部门制定空气污染控制提供了更充分的参考. 展开更多
关键词 空气质量指数 互补集合经验模态分解 偏自相关函数 ELMAN神经网络 空气质量等级
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部