Several catalysts comprising Pt supported on octahedral Fe3O4(Pt/Fe3O4) were prepared by a facile method involving co-precipitation followed by thermal treatment at different temperatures. A variety of characterizat...Several catalysts comprising Pt supported on octahedral Fe3O4(Pt/Fe3O4) were prepared by a facile method involving co-precipitation followed by thermal treatment at different temperatures. A variety of characterization results revealed that this preparation process afforded highly crystalline octahedral Fe3O4 with a uniform distribution of Pt nanoparticles on its surface. The thermal-treatment temperature significantly influenced the redox properties of the Pt/Fe3O4 catalysts. All the Pt/Fe3O4 catalysts were found to be catalytically active and stable for the oxidation of low-concentration formaldehyde(HCHO) with oxygen. The catalyst prepared by thermal treatment at 80 °C(labelled Pt/Fe3O4-80) exhibited the highest catalytic activity, efficiently converting HCHO to CO2 and H2 O under ambient temperature and moisture conditions. The excellent performance of Pt/Fe3O4-80 was mainly attributed to beneficial interactions between the Pt and Fe species that result in the formation a higher density of active interface sites(e.g., Pt-O-FeO x and Pt-OH-FeO x). The introduction of water vapor improves the catalytic activity of the Pt/Fe3O4 catalysts as it participates in a water-assisted dissociation process.展开更多
A silylated PNP ligand with asymmetric structure was synthesized using(γ-aminopropyl)triethoxysilane and chlorodiphenyl phosphine as raw materials.The optimal synthetic conditions of the PNP ligand were obtained by c...A silylated PNP ligand with asymmetric structure was synthesized using(γ-aminopropyl)triethoxysilane and chlorodiphenyl phosphine as raw materials.The optimal synthetic conditions of the PNP ligand were obtained by conditional experiments and were as follows:dichloromethane was solvent,triethylamine was acid acceptor,the mole ratio of chlorodiphenylphosphine and(γ-aminopropyl)triethoxysilane was 2.1∶1,the dropping temperature of chlorodiphenylphosphine was-5℃,the dropping time was 30 min,the reaction temperature was 25℃and the reaction time was 12 h.Under the conditions,the yield of the silylated PNP ligand was 91.20%.Based on grey correlation analysis,the dropping temperature was the main factor for the yield of the silylated PNP ligand.The single-active central chromium catalyst based on the silylated PNP ligand was synthesized by complexation reaction with the silylated PNP ligand and chromium chloride tetrahydrofuran complex as materials,and the yield was 95.25%.The chemical structures of the silylated PNP ligand and the corresponding chromium catalyst were confirmed by elemental analysis,FT-IR,^(1)H NMR,MS and ICP.The single-active central chromium catalyst based on the silylated PNP ligand had good catalytic activity for ethylene oligomerization,and the content of C_(8)olefin was 72.40%,which was superior to Si-Schiff-Cr based on intermolecular coordination.展开更多
以酸化改性膨润土为载体,采用浸泡法制备了稀土La掺杂的La/酸化膨润土吸附剂。通过XRD和F T IR对其结构进行了表征,探讨了膨润土的改性机理,研究了该吸附剂对废水的除磷性能。结果表明:酸化过程洗掉了膨润土中的杂质和氧化铝,稀土镧的...以酸化改性膨润土为载体,采用浸泡法制备了稀土La掺杂的La/酸化膨润土吸附剂。通过XRD和F T IR对其结构进行了表征,探讨了膨润土的改性机理,研究了该吸附剂对废水的除磷性能。结果表明:酸化过程洗掉了膨润土中的杂质和氧化铝,稀土镧的掺杂在膨润土层间及表面引入了一定数量的羟基化合物,改善了膨润土的层间结构并生成了新的La—O—Si键,实现了La与膨润土的复合,提高了膨润土的吸附性能。展开更多
文摘Several catalysts comprising Pt supported on octahedral Fe3O4(Pt/Fe3O4) were prepared by a facile method involving co-precipitation followed by thermal treatment at different temperatures. A variety of characterization results revealed that this preparation process afforded highly crystalline octahedral Fe3O4 with a uniform distribution of Pt nanoparticles on its surface. The thermal-treatment temperature significantly influenced the redox properties of the Pt/Fe3O4 catalysts. All the Pt/Fe3O4 catalysts were found to be catalytically active and stable for the oxidation of low-concentration formaldehyde(HCHO) with oxygen. The catalyst prepared by thermal treatment at 80 °C(labelled Pt/Fe3O4-80) exhibited the highest catalytic activity, efficiently converting HCHO to CO2 and H2 O under ambient temperature and moisture conditions. The excellent performance of Pt/Fe3O4-80 was mainly attributed to beneficial interactions between the Pt and Fe species that result in the formation a higher density of active interface sites(e.g., Pt-O-FeO x and Pt-OH-FeO x). The introduction of water vapor improves the catalytic activity of the Pt/Fe3O4 catalysts as it participates in a water-assisted dissociation process.
基金supported by Key Research and Development Project of Heilongjiang Province(JD22A026)
文摘A silylated PNP ligand with asymmetric structure was synthesized using(γ-aminopropyl)triethoxysilane and chlorodiphenyl phosphine as raw materials.The optimal synthetic conditions of the PNP ligand were obtained by conditional experiments and were as follows:dichloromethane was solvent,triethylamine was acid acceptor,the mole ratio of chlorodiphenylphosphine and(γ-aminopropyl)triethoxysilane was 2.1∶1,the dropping temperature of chlorodiphenylphosphine was-5℃,the dropping time was 30 min,the reaction temperature was 25℃and the reaction time was 12 h.Under the conditions,the yield of the silylated PNP ligand was 91.20%.Based on grey correlation analysis,the dropping temperature was the main factor for the yield of the silylated PNP ligand.The single-active central chromium catalyst based on the silylated PNP ligand was synthesized by complexation reaction with the silylated PNP ligand and chromium chloride tetrahydrofuran complex as materials,and the yield was 95.25%.The chemical structures of the silylated PNP ligand and the corresponding chromium catalyst were confirmed by elemental analysis,FT-IR,^(1)H NMR,MS and ICP.The single-active central chromium catalyst based on the silylated PNP ligand had good catalytic activity for ethylene oligomerization,and the content of C_(8)olefin was 72.40%,which was superior to Si-Schiff-Cr based on intermolecular coordination.
文摘以酸化改性膨润土为载体,采用浸泡法制备了稀土La掺杂的La/酸化膨润土吸附剂。通过XRD和F T IR对其结构进行了表征,探讨了膨润土的改性机理,研究了该吸附剂对废水的除磷性能。结果表明:酸化过程洗掉了膨润土中的杂质和氧化铝,稀土镧的掺杂在膨润土层间及表面引入了一定数量的羟基化合物,改善了膨润土的层间结构并生成了新的La—O—Si键,实现了La与膨润土的复合,提高了膨润土的吸附性能。