期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
LIF技术与SIMCA算法在煤矿突水水源识别中的研究 被引量:8
1
作者 闫鹏程 周孟然 +2 位作者 刘启蒙 张开远 何晨阳 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第1期243-247,共5页
煤矿突水水源类型的快速识别对于煤矿水害预警防治意义重大。针对传统水化学方法水源识别耗时较长的问题,提出一种基于激光诱导荧光光谱(LIF)技术与簇类的独立软模式(SIMCA)算法的煤矿突水水源快速识别方法。激光诱导荧光光谱技术具有... 煤矿突水水源类型的快速识别对于煤矿水害预警防治意义重大。针对传统水化学方法水源识别耗时较长的问题,提出一种基于激光诱导荧光光谱(LIF)技术与簇类的独立软模式(SIMCA)算法的煤矿突水水源快速识别方法。激光诱导荧光光谱技术具有分析速度快、灵敏度高等特点,在激光器的辅助下,荧光光谱仪实时采集荧光光谱,根据水样的荧光光谱即可进行水源类型识别,在数据库完备的情况下,只需几秒即可进行煤矿水源判断,对于煤矿的水害预警以及灾后救援来说意义重大。实验利用405nm激光器发射激光,打入被测水体,得到五种常见突水水样的共100组荧光光谱,对各水样的荧光光谱进行光谱预处理。每种水样使用15组共75组荧光光谱作为预测集,剩余的25组水样的荧光光谱作为测试集。利用主成分分析(PCA)分别对五种水样进行建模,而后依据所建模型进行SIMCA分类。实验发现不同水样的荧光光谱差异明显,经过Gaussian-Filter预处理后的荧光光谱,在主成分数为2,显著性程度α=5%的情况下,利用SIMCA算法进行水样分类,预测集和测试集的正确率皆为100%。 展开更多
关键词 煤矿突水 水源识别 激光诱导荧光光谱 簇类的独立软模式 主成分分析
下载PDF
LIF技术与PLS-DA算法联合辨识矿井涌水水源类型的研究 被引量:3
2
作者 闫鹏程 周孟然 +2 位作者 刘启蒙 王瑞 刘骏 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第9期2858-2862,共5页
快速的矿井涌水水源辨识对于矿井的水灾预警及灾后救援意义重大。常规方法使用离子浓度做为判别因子,耗时过长,因此提出一种激光诱导荧光光谱(LIF)技术与偏最小二乘判别分析(PLS-DA)算法联合快速辨识矿井涌水水源类型的方法。实验使用40... 快速的矿井涌水水源辨识对于矿井的水灾预警及灾后救援意义重大。常规方法使用离子浓度做为判别因子,耗时过长,因此提出一种激光诱导荧光光谱(LIF)技术与偏最小二乘判别分析(PLS-DA)算法联合快速辨识矿井涌水水源类型的方法。实验使用405nm激光对被测水体进行激发,获取矿井5个不同含水层100组水样的荧光光谱,根据光谱曲线特征,对数据进行压缩处理,获取合适的光谱数据。每种水样使用15组共75组光谱数据作为建模集,剩余的25组水样的光谱数据作为测试集。为验证实验结果,设计了簇类的独立软模式(SIMCA)算法与PLS-DA算法构建的实验模型进行对比。实验发现矿井不同含水层水样的荧光光谱差异较大,在不进行任何预处理的情况下,以PLS模型为基础的PLS-DA算法较SIMCA算法的建模正确率高,达到了100%,其校正及验证结果与实际分类变量的相关系数均大于0.951,校正集均方根误差(RMSECV)和验证集均方根误差(RMSEP)均小于0.123,利用模型对测试集中五种水样样本的识别正确率均为100%。 展开更多
关键词 矿井涌水 水源辨识 激光诱导荧光光谱 偏最小二乘判别分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部