期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于GWO-LSTM的丹江口水库入库径流预测 被引量:12
1
作者 王立辉 杨辉斌 +2 位作者 王银堂 刘勇 胡庆芳 《水利水运工程学报》 CSCD 北大核心 2021年第6期51-59,共9页
入库径流预测对丹江口水库调度及水资源利用具有重要的指示意义。基于灰狼优化算法(GWO)构建不同的预测模型,开展丹江口水库月入库径流预测研究,并探讨网络结构超参数的选取及验证GWO全局遍历性、收敛快的特点。结果表明:灰狼优化的长... 入库径流预测对丹江口水库调度及水资源利用具有重要的指示意义。基于灰狼优化算法(GWO)构建不同的预测模型,开展丹江口水库月入库径流预测研究,并探讨网络结构超参数的选取及验证GWO全局遍历性、收敛快的特点。结果表明:灰狼优化的长短期记忆模型(GWO-LSTM)的预测精度和泛化性能优于灰狼优化的人工神经网络模型(GWO-BP)和逐步回归模型,其验证期的纳什效率系数平均达到0.969,整体趋势预测较好,峰值捕捉略有不足,可适用于丹江口水库月入库径流预测;模型超参数依据经验取值时,其预测结果不如GWO优化,验证期的纳什效率系数不足0.5,未达到可接受范围,而且带有一定的偶然性,建议选用具有全局优化特性的优化算法进行超参数选取;验证了GWO算法全局遍历性和收敛快的特点,平均在3次迭代后可达到收敛状态。 展开更多
关键词 长短期记忆模型 径流预测 灰狼优化算法
下载PDF
汉江流域安康站日径流预测的LSTM模型初步研究 被引量:43
2
作者 胡庆芳 曹士圯 +3 位作者 杨辉斌 王银堂 李伶杰 王立辉 《地理科学进展》 CSSCI CSCD 北大核心 2020年第4期636-642,共7页
论文基于2003-2014年水文资料,采用长短期记忆神经网络(Long-Short Term Memory,LSTM),构建了汉江上游安康站日径流预测模型,评价了不同输入条件下日径流预测的精度。结果表明:当预见期为1 d时,在仅以安康站前期日径流量作为输入的条件... 论文基于2003-2014年水文资料,采用长短期记忆神经网络(Long-Short Term Memory,LSTM),构建了汉江上游安康站日径流预测模型,评价了不同输入条件下日径流预测的精度。结果表明:当预见期为1 d时,在仅以安康站前期日径流量作为输入的条件下,LSTM模型在训练期和检验期的效率系数分别达到0.68和0.74;如再将流域前期面雨量和上游石泉站前期日径流量加入LSTM网络作为输入变量,安康站日径流量预测效果将更好,训练期和检验期的效率系数最高可达到0.83和0.84,均方根误差也有显著削减,且对主要洪峰流量的预测能力也有一定提高。此外,LSTM可以有效避免过拟合等问题,具有较好的泛化性能。但当预见期从1 d延长至2、3 d时,LSTM的预测精度显著降低。 展开更多
关键词 长短期记忆神经网络 日径流预测 汉江流域 安康站
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部