期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
异质/同质相结高效光催化的研究进展:以相变构建为例(英文) 被引量:7
1
作者 杨凯 李笑笑 +4 位作者 曾德彬 陈范云 余长林 张开莲 黄微雅 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第6期796-818,共23页
半导体光催化剂在环境处理和能量转换方面有着巨大的应用潜力,但由于电子-空穴对的复合作用,半导体光催化剂的光催化性能较低.相结的存在是提高电子-空穴分离效率及光催化活性的有效途径,对相结设计的深入研究是提高电荷转移性能和效率... 半导体光催化剂在环境处理和能量转换方面有着巨大的应用潜力,但由于电子-空穴对的复合作用,半导体光催化剂的光催化性能较低.相结的存在是提高电子-空穴分离效率及光催化活性的有效途径,对相结设计的深入研究是提高电荷转移性能和效率的有效手段.因此,相结光催化技术的发展,对于设计一个良好的相结和了解电子-空穴分离机理具有重要的意义.通常,相结的构建需要特殊的制备技术以及良好的晶格匹配.纳米异质结材料结合快速转移载流子的特点,具有小尺寸效应和颗粒限域效应的优点,且具有单组分纳米材料或体相异质结不具有的独特特性.纳米晶异质结可以促进光生电子的快速转移,根据两种半导体带的相对位置,异质结可分为I型、II型和III型,根据不同的电子转移途径可分为p-n型和Z-型.当p型半导体(空穴为多数电荷载流子)或n型半导体(电子为多数电荷载流子)密切接触时,由于能带和其它性质的差异,会形成结,并在结的两侧形成空间电位差.空间电位差的存在可以使产生光生载流子从一个半导体能级注入到另一个半导体能级,从而促进电子和空穴的分离,提高光催化效率.以p-n结为例,当它们在这两个区域共存时,它们的边界层形成一个薄的p-n结.由于p型区空穴浓度高, n型区电子浓度高,结处存在电子和空穴的扩散现象.在p-n结边界附近形成空间电荷区,从而在结内形成强的局域电场.在结的局部电场作用下,电荷在结两端累积形成电位差,后者作为驱动力可以有效地分离光生电荷.近年来,人们在纳米相结的设计和制备上做了大量工作以提高光催化剂活性.虽然异质结具有优良的性能,但异质结的成分和元素并不是单一的,它的形成也不是一步反应.首先,需要分别合成异质结的两个成分,反应复杂,耗时,不环保.与异质结相比,同一材料通过相变构建的结也能实现光生载流子的高效分离.同质化不需要引入其它要素,因此引起了大量关注.在相变过程中,大多数均由不同晶相的半导体形成,如锐钛矿型/金红石型TiO_2,α-β相Ga_2O_3或六方/立方Cd S.由于化学成分相同,半导体材料的能带结构不易改变.因此,对同晶材料的同质结研究较少.虽然已有几篇关于异质相结的综述论文,但通过对外部诱导相变法制备相结的回顾,仍可为读者提供有关该领域研究进展的新的认识.本文对低成本、高效率的相变思路在光催化领域中的应用进行了简要的总结,并对其在光催化领域中的应用前景进行了展望. 展开更多
关键词 相变 相结 光催化 有效电子转移
下载PDF
通过调节反应物气体吸附电子转移行为实现热驱动ZnO光催化CO还原和H_(2)氧化反应 被引量:1
2
作者 王中明 王洪 +4 位作者 王笑笑 陈旬 于岩 戴文新 付贤智 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第9期1538-1552,共15页
传统热催化和低温光催化体系在实际应用中都存在技术缺陷.近些年,人们通过将光和热耦合,克服它们各自的局限性,开创了光热协同催化新领域.目前已在CO减排、CO甲烷化和VOCs降解等诸多应用领域得到应用.当然,随着光热催化的发展,研究者也... 传统热催化和低温光催化体系在实际应用中都存在技术缺陷.近些年,人们通过将光和热耦合,克服它们各自的局限性,开创了光热协同催化新领域.目前已在CO减排、CO甲烷化和VOCs降解等诸多应用领域得到应用.当然,随着光热催化的发展,研究者也一直在思考光热协同的内在作用机理.目前大多数的机理分析都是从材料本身出发,通过研究表面反应、光吸收或金属与载体之间的电子转移行为来探讨光热协同效应.然而,表面反应只是多相光催化反应的其中一个步骤,此外还包括反应物的扩散和吸附及产物的脱附和扩散,其中反应物的吸附过程因其多变的吸附行为可能在整个反应过程中起着重要的作用.光热协同可能通过作用于气体吸附过程来调节反应的选择性和活性,但到目前为止,两者之间的内在联系尚不清楚.所以,从反应物气体吸附行为(尤其是吸附电子转移行为)的角度深入研究光热协同效应具有重要意义.本文在光催化CO还原和H_(2)氧化体系中引入一定的热条件,希望通过热驱动效应影响H_(2)/CO吸附时的电子转移行为,进而改变反应行为.为简化实验附加条件,选用常见的具有合适带隙宽度以及良好光吸收的ZnO作为研究材料,通过水热法合成了在(100)晶面具有氧空位(V_(Os))的ZnO样品,引入气敏传感系统检测不同光热条件下的H_(2)/CO气体吸附电子转移行为,并结合多种原位手段从物质结构和气体吸附两个角度出发,分析光热条件下气体吸附行为变化的机理.与我们预测一致,在紫外光照下随着温度的升高,光热协同作用于(002)晶面,原位生长了锌空位(V_(Zn)s),为H_(2)分子提供吸附位点.H_(2)从Vos位点吸附转移到V_(Zn)s上,并导致H_(2)(ads)从得电子转变为失电子行为(形成有利于H_(2)氧化的定向吸附),从而发生H_(2)氧化反应.对于同样吸附在高表面能(002)晶面上的CO分子来说,光热协同效应通过抬升材料费米能级来改变其电子转移行为,CO(ads)由失电子转变为得电子行为(形成有利于CO还原的定向吸附),并进一步被失去电子的H_(2)(ads)还原.此外,还发现CO或H_(2)的光催化氧化反应的发生只依赖于CO或H_(2)单分子的定向活化(不考虑O2的吸附和活化),表明其归属于E-R反应过程.而CO的光催化还原反应需要同时满足CO和H_(2)双分子的定向活化,可能归属于L-H反应过程.综上,本文研究结果表明,光热协同内在作用可能是通过改变ZnO材料结构,调节反应物吸附动力学中的电子转移行为,从而引起反应物的定向活化,进而改变反应选择性. 展开更多
关键词 光热协同 电子转移行为 吸附动力学控制 原位表征 费米能级
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部