期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
局部二值平均熵模式与深度残差网络的人群密度估计 被引量:2
1
作者 黄丽辉 《科学技术与工程》 北大核心 2018年第27期162-169,共8页
针对人群密度估计算法中场景的人群遮挡、尺度光照变化、噪声和低分辨率等问题,提出了一种结合局部二值熵值纹理特征(ELBP)与深度残差网络的人群密度估计算法。该算法首先在原始RGB人群图像上提取LBP特征;然后通过计算邻域像素点的平均... 针对人群密度估计算法中场景的人群遮挡、尺度光照变化、噪声和低分辨率等问题,提出了一种结合局部二值熵值纹理特征(ELBP)与深度残差网络的人群密度估计算法。该算法首先在原始RGB人群图像上提取LBP特征;然后通过计算邻域像素点的平均信息熵模式构建ELBP纹理特征;随后基于ELBP纹理特征构建了一个深度为18层的深度残差网络;最后形成了对人群密度估计的end-to-end模式。为验证算法的可行性和有效性,在开源的人群密度估计数据集上进行实验。首先邀请10位专家对开源的数据集进行有效的人群聚集标注作为真实输出标签;随后采用研究提出的算法对人群密度完成估计,并与真实结果进行比较。另外,在三种不同的特征和三种不同的机器学习模型上进行了横向比较。实验结果表明,提出的ELBP纹理特征能够很好地应对噪声和低分辨率问题;深度残差网络则能够解决人群遮挡、尺度光照变化的问题。与传统算法相比,提出的算法能够提升人群密度估计的性能。 展开更多
关键词 ELBP纹理特征 深度残差网络 人群密度估计 端到端模式
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部