期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于生物信息学的子宫内膜癌预后模型构建
1
作者 林鹏 孙培 许淑霞 《中国现代医生》 2024年第3期47-53,共7页
目的 筛选与子宫内膜癌(endometrial carcinoma,EC)预后相关的差异基因并构建预后模型。方法 从癌症基因图谱(The Cancer Genome Atlas,TCGA)数据库和基因表达谱数据库(Gene Expression Omnibus,GEO)的数据集GSE63678中下载EC和正常对... 目的 筛选与子宫内膜癌(endometrial carcinoma,EC)预后相关的差异基因并构建预后模型。方法 从癌症基因图谱(The Cancer Genome Atlas,TCGA)数据库和基因表达谱数据库(Gene Expression Omnibus,GEO)的数据集GSE63678中下载EC和正常对照样本的基因表达数据,筛选出共有差异基因。采用LASSO回归分析筛选出具有预后意义的基因,并构建预后特征。从TCGA数据库中获取具有完整信息的EC患者,按1∶1的比例随机分为训练组和验证组。对训练组患者基于预后特征构建生存曲线;采用基因本体论(geneontology,GO)分析和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)对预后特征进行功能注释和通路富集分析;结合预后特征及临床危险因素构建列线图,采用校准曲线和C指数评估列线图性能。最后使用验证组加以验证。结果 从TCGA和GEO数据库分别筛选出4800个和257个差异基因,其中共表达的上调基因73个,下调基因52个;LASSO回归分析筛选出6个预后基因,分别为ORMDL2、BNC2、TTK、MAMLD1、KCTD7、DCLK2;生存曲线结果表明高风险组患者的总生存率显著低于低风险组(P<0.01);GO分析和KEGG结果显示预后特征与细胞周期相关。列线图在训练组与验证组中均显示出良好的预测能力。结论 本研究构建一种基于预后特征的预测模型,可准确预测EC患者的预后,为临床诊疗提供新的理论支持。 展开更多
关键词 子宫内膜癌 生物信息学 预后 预测模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部