期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
实例层数据清洗技术研究 被引量:7
1
作者 胡文瑜 应康辉 《计算机技术与发展》 2022年第5期22-28,共7页
随着科学、技术和工程的迅猛发展,近20年来,许多领域诸如光学观测、光学监控、健康医护、传感器、用户数据、互联网和金融公司以及供应链系统等都产生了海量的数据(例如,在医疗检测中,数据都是源源不断而来的,形成了“数据灾难”)。有... 随着科学、技术和工程的迅猛发展,近20年来,许多领域诸如光学观测、光学监控、健康医护、传感器、用户数据、互联网和金融公司以及供应链系统等都产生了海量的数据(例如,在医疗检测中,数据都是源源不断而来的,形成了“数据灾难”)。有效的数据分析和数据挖掘建立在数据可用性和数据高质量的基础上,数据高质量的前提是需要对数据进行清洗。数据清洗是对脏数据进行检测和纠正的过程,是进行数据分析和管理的基础,也是常用的提高数据质量的技术。实例层数据清洗是数据清洗的重要组成部分,该文重点对实例层数据清洗技术中属性和重复记录值的检测及清洗方法进行比较和分析总结。介绍了数据清洗技术以电气工程领域、医药领域、交通领域为代表的应用领域结合应用情况,对不同的数据集特点与适用的实例层数据清洗技术提供了有价值的选择建议。最后对实例层数据清洗技术面临的问题与挑战及发展方向进行了展望。 展开更多
关键词 实例层数据清洗 属性检测 属性清洗 重复记录检测 重复记录清洗
下载PDF
改进并行蚁群算法在配电网网架优化中的应用 被引量:1
2
作者 卜冠南 刘建华 +2 位作者 张冬阳 胡任远 罗逸轩 《计算机应用与软件》 北大核心 2023年第9期73-77,共5页
针对蚁群算法收敛速度慢、易陷入局部极小的不足,在并行蚁群算法的基础上,改进组间蚂蚁沟通交流方式,并提出一种自适应分组策略,在算法运行过程中,每过一定迭代次数,将蚂蚁的组数减半,每组蚂蚁的数量倍增,直至为一组蚂蚁。每次蚂蚁组数... 针对蚁群算法收敛速度慢、易陷入局部极小的不足,在并行蚁群算法的基础上,改进组间蚂蚁沟通交流方式,并提出一种自适应分组策略,在算法运行过程中,每过一定迭代次数,将蚂蚁的组数减半,每组蚂蚁的数量倍增,直至为一组蚂蚁。每次蚂蚁组数减半时,采用一种组间信息素融合规则更新留存组蚂蚁路径信息素。通过一个配电网网架优化问题的实例进行实验,仿真结果表明改进算法在收敛速度和寻优方面都有所提升。 展开更多
关键词 配电网 网架优化 并行 蚁群算法 自适应
下载PDF
一带一路背景下应用型高校国际化发展现状调查与数据分析
3
作者 吴晓晶 王嘉宏 《职业教育(汉斯)》 2021年第3期93-103,共11页
本文以福建省某省属应用型高校的国际化现状调查数据为依据,分析高等教育国际化竞争力的影响因素,藉由统计数据分析应用型高校国际化发展水平。研究对象为校内具有国际观或有国(境)外交流经验的在读本科生和硕士研究生,藉由问卷调查和... 本文以福建省某省属应用型高校的国际化现状调查数据为依据,分析高等教育国际化竞争力的影响因素,藉由统计数据分析应用型高校国际化发展水平。研究对象为校内具有国际观或有国(境)外交流经验的在读本科生和硕士研究生,藉由问卷调查和数据分析探索一带一路背景下福建省省属应用型高校的国际化竞争力发展途径。研究成果可作为高等教育管理部门的决策参考。 展开更多
关键词 应用型高校国际化 评价指标 数据分析 问卷调查
下载PDF
基于深度学习的SOC预测模型比较研究
4
作者 刘建华 陈治铭 +1 位作者 陈可纬 陈林颖 《计算机与数字工程》 2024年第6期1668-1675,共8页
锂离子电池的荷电状态(SOC)所包含的物理性质和电化学性质十分复杂,通常很难直接测定其数值,利用大数据的机器学习模型来预测SOC成为一个重要技术方法。近年来,随着神经网络的深度学习算法发展,基于深度学习的SOC估计模型已取得突破成... 锂离子电池的荷电状态(SOC)所包含的物理性质和电化学性质十分复杂,通常很难直接测定其数值,利用大数据的机器学习模型来预测SOC成为一个重要技术方法。近年来,随着神经网络的深度学习算法发展,基于深度学习的SOC估计模型已取得突破成果。论文总结了锂离子电池荷电状态预测方法的深度学习方法,主要分析比较CNN、GRU、LSTM、CNN-LSTM和CNN-GRU的经典模型方法与特点,通过实验数据分析对比其各模型的效果。论文对比实验选取不同室温环境下的不同工况作为测试集,通过预测结果的误差评估发现卷积神经网络对于循环神经网络的预测结果优化有较大的提升,其中CNN-LSTM的效果尤为显著。 展开更多
关键词 SOC 卷积神经网络 循环神经网络 CNN-LSTM CNN-GRU
下载PDF
融合多窗口特征的词对标记情感三元组抽取
5
作者 林杰 刘建华 +2 位作者 陈林颖 郑智雄 孙水华 《计算机工程与应用》 CSCD 北大核心 2024年第16期159-167,共9页
方面情感三元组抽取旨在从句子中抽取方面词、意见词和对应的情感极性。针对目前研究未充分挖掘局部上下文语义信息,缺乏对局部范围内的方面意见词对关联学习,以及遭受错误传播等问题,提出一种融合多窗口特征的词对标记情感三元组抽取... 方面情感三元组抽取旨在从句子中抽取方面词、意见词和对应的情感极性。针对目前研究未充分挖掘局部上下文语义信息,缺乏对局部范围内的方面意见词对关联学习,以及遭受错误传播等问题,提出一种融合多窗口特征的词对标记情感三元组抽取模型。该模型利用BERT对句子信息进行处理,获取句子编码特征,采用多窗口特征学习机制学习局部范围内的情感特征关联,并挖掘句子包含的潜在语义信息,使用多头注意力图转换模块将所学习到的特征聚合成标记分布概率,利用改进的词对标记方案标记句子并解码得到三元组。在SemEval-ASTE的四个基准数据集上进行实验分析,相比GTS-BERT模型,所提模型在三元组抽取任务上F1分值分别提高了2.33、6.57、2.97、4.84个百分点。实验结果表明,所提模型可以有效学习局部语义信息,准确标记方面意见跨度,较为精确地提取情感三元组。 展开更多
关键词 方面情感三元组 情感极性 特征学习 多头注意力 词对标记方案
下载PDF
基于大型语言模型指令微调的心理健康领域联合信息抽取
6
作者 蔡子杰 方荟 +2 位作者 刘建华 徐戈 龙云飞 《中文信息学报》 CSCD 北大核心 2024年第8期112-127,共16页
信息抽取目的在于从文本中提取关键的信息。心理健康领域的信息抽取能力反映了语言模型对人类心理健康相关信息的自然语言理解能力。提高语言模型的领域信息抽取能力,还能为AI心理健康服务提供重要的知识来源。但目前心理健康信息抽取... 信息抽取目的在于从文本中提取关键的信息。心理健康领域的信息抽取能力反映了语言模型对人类心理健康相关信息的自然语言理解能力。提高语言模型的领域信息抽取能力,还能为AI心理健康服务提供重要的知识来源。但目前心理健康信息抽取的中文指令数据集十分匮乏,这限制了相关研究和应用的发展。针对以上问题,该文在心理学专家的指导下提示ChatGPT生成样本实例,并通过设计生成指令以及数据增强,构建了5641条包含命名实体识别、关系抽取和事件抽取三项基本抽取任务的心理健康领域联合信息抽取指令数据集,旨在填补心理健康领域信息抽取中文指令数据集的不足。随后使用该指令数据集对大型语言模型进行参数高效微调。与基线模型的性能对比以及人工评估的实验结果表明,大型语言模型经过有效的指令微调后可以完成心理健康领域信息抽取的联合任务。 展开更多
关键词 信息抽取 心理健康 大型语言模型 指令微调
下载PDF
基于多尺度流模型的视觉异常检测研究 被引量:1
7
作者 毛国君 吴星臻 邢树礼 《自动化学报》 EI CAS CSCD 北大核心 2024年第3期640-648,共9页
针对现有异常检测(Anomaly detection,AD)模型计算效率低和检测性能差等问题,提出一种多尺度流模型(Multi-scale normalizing flow,MS-Flow),通过多尺度交叉融合实现高效的视觉图像异常识别.具体地,在流模型(Normalizing flow,NF)内部... 针对现有异常检测(Anomaly detection,AD)模型计算效率低和检测性能差等问题,提出一种多尺度流模型(Multi-scale normalizing flow,MS-Flow),通过多尺度交叉融合实现高效的视觉图像异常识别.具体地,在流模型(Normalizing flow,NF)内部构建层级式的多尺度架构来避免多通道数据的冗余交叉计算,同时保证网络的多尺度表达能力.此外,设计的层级感知模块通过逐层级的多粒度特征融合,在细粒度级别表达多尺度特征,有效地提高分布估计的精确性.该方法是一个平衡检测精度与计算效率的解决方案.在两个公开数据集上的实验表明,所提方法相较于以往的检测模型能够获得更高的检测精度(在MVTec AD和BTAD数据集上的平均AUROC(Area under the receiver operating characteristics)分别为99.7%和96.0%),同时具有更高的计算效率,浮点运算次数(Floating point operations,FLOPs)约为CS-Flow的1/8. 展开更多
关键词 异常检测 流模型 层级感知 多尺度特征
下载PDF
多特征交互的方面情感三元组提取 被引量:1
8
作者 陈林颖 刘建华 +3 位作者 郑智雄 林杰 徐戈 孙水华 《计算机科学与探索》 CSCD 北大核心 2024年第4期1057-1067,共11页
方面情感三元组提取是方面级情感分析的子任务之一,旨在提取句子中的方面词、其对应的意见词和情感极性。先前研究集中于设计一种新范式以端到端的方式完成三元组提取任务。然而,这些方法忽略外部知识在模型中的作用,没有充分挖掘和利... 方面情感三元组提取是方面级情感分析的子任务之一,旨在提取句子中的方面词、其对应的意见词和情感极性。先前研究集中于设计一种新范式以端到端的方式完成三元组提取任务。然而,这些方法忽略外部知识在模型中的作用,没有充分挖掘和利用语义信息、词性信息以及局部上下文信息。针对上述问题,提出了多特征交互的方面情感三元组提取(MFI-ASTE)模型。首先,该模型通过BERT预训练模型学习句子中的上下文语义特征信息,并使用自注意力机制加强语义特征;其次,使语义特征与所提取到的词性特征交互,二者相互学习,加强词性的组合能力与语义信息;再次,使用多个不同窗口的卷积神经网络提取每个单词的多重局部上下文特征并使用多分门控机制筛选这些多重局部特征;然后,采用双线性层融合提取到的三类外部知识特征;最后,利用双仿射注意力机制预测网格标记并通过特定的解码方案解码三元组。实验结果表明,该模型在四个数据集上的F1值比现有的主流模型分别提升了6.83%、5.60%、0.54%和1.22%。 展开更多
关键词 方面情感三元组提取 自注意力机制 卷积神经网络 网格标记方案 双仿射注意力机制
下载PDF
基于多分主干外部注意力网络的水声信号识别
9
作者 王越 李佐勇 +1 位作者 颜佳泉 胡蓉 《计算机系统应用》 2024年第4期263-270,共8页
水声信号识别近年来备受关注,由于海洋信道具有时变空变性、信号传播的衰落特性和水下目标声源具有复杂多变性,水声信号识别任务面临巨大挑战.传统的水声信号识别方法难以充分获取目标的表征信息且不具备良好的抗噪声能力,识别效果有待... 水声信号识别近年来备受关注,由于海洋信道具有时变空变性、信号传播的衰落特性和水下目标声源具有复杂多变性,水声信号识别任务面临巨大挑战.传统的水声信号识别方法难以充分获取目标的表征信息且不具备良好的抗噪声能力,识别效果有待提升.针对上述问题,本文提出一种基于多分支外部注意力网络(multi-branch external attention network,MEANet)的水声信号识别方法,可以在复杂海洋环境下充分获取水声信号的特征并进行识别.MEANet由多分支主干网络,通道、空间注意力模块和外部注意力模块组成.首先,输入数据通过多个并行的主干网络分支,提取水声信号不同层级的特征信息;其次,辅以通道、空间注意力模块对水声信号的通道和空间维度分别进行加权,调节不同通道和空间位置对特征表示的重要性;最后,整合外部注意力模块,以外部记忆单元和附加计算来引导网络的特征提取和预测,从而显著提高模型的识别率和鲁棒性.实验结果表明,本文提出的MEANet在ShipsEar数据集上的水声信号识别率达到98.84%,显著优于其他对比算法,证实了其有效性. 展开更多
关键词 水声信号识别 多分支主干 注意力机制 音频分类 时频分析
下载PDF
基于计算物流的自动化集装箱码头AGV生产调度
10
作者 李斌 崔宏阳 《计算机应用研究》 CSCD 北大核心 2024年第6期1704-1713,共10页
针对自动化集装箱码头自动导引车(AGV)在线实时生产调度约束动态复杂和难以可视化的问题,在计算物流框架下,利用AnyLogic平台创建自动化码头水平运输计算实验模型,并针对平台中已有的经典资源分配策略,面向AGV生产调度提出两方面的改进... 针对自动化集装箱码头自动导引车(AGV)在线实时生产调度约束动态复杂和难以可视化的问题,在计算物流框架下,利用AnyLogic平台创建自动化码头水平运输计算实验模型,并针对平台中已有的经典资源分配策略,面向AGV生产调度提出两方面的改进:将运筹规划商业求解器与计算实验平台结合来求解动态复杂组合优化问题;基于计算物流的思想方法,迁移和定制出五种面向问题探索的自定义AGV在线调度算法。由于商业求解器的局限性,模型和实验数据是基于自动化码头进口箱作业部分。实验表明,两种改进策略能够弥补商业求解器和计算实验平台的部分不足,尤其是自定义策略相较于经典资源分配策略能够面向特定装卸船需求更好地实现AGV生产调度,实现自动化码头水平运输的高效作业。 展开更多
关键词 自动化集装箱码头 计算物流 AnyLogic仿真 AGV调度策略 CPLEX求解 自定义策略
下载PDF
融合强关联依赖和简洁语法的方面级情感分析模型
11
作者 柯添赐 刘建华 +2 位作者 孙水华 郑智雄 蔡子杰 《计算机应用》 CSCD 北大核心 2024年第6期1786-1795,共10页
针对语法依赖树存在多个方面词相互干扰的依赖信息、无效单词,以及标点符号带来的冗余信息和方面词与对应情感词之间的关联性较弱等问题,提出一种融合强关联依赖和简洁语法的方面级情感分析模型(SADCS)。首先,构建情感词性(POS)列表,通... 针对语法依赖树存在多个方面词相互干扰的依赖信息、无效单词,以及标点符号带来的冗余信息和方面词与对应情感词之间的关联性较弱等问题,提出一种融合强关联依赖和简洁语法的方面级情感分析模型(SADCS)。首先,构建情感词性(POS)列表,通过该列表加强方面词与对应情感的相关性;其次,构建融合POS和依赖关系的联合列表,通过该联合列表去除已优化的依赖树无效单词与标点符号的冗余信息;再次,将优化后的依赖树与图注意力网络(GAT)结合建模提取上下文特征;最后,与依赖关系类型的特征信息进行交互学习并融合特征,增强特征表示,最终使分类器能高效预测每个方面词的情感极性。将所提模型在4个公开数据集上进行实验分析,与DMF-GAT-BERT(Dynamic Multichannel Fusion mechanism based on the GAT and BERT(Bidirectional Encoder Representations from Transformers))模型相比,所提模型的准确率分别提高了1.48、1.81、0.09和0.44个百分点。实验结果表明,所提模型能够有效增强方面词与情感词的联系,使方面词情感极性的预测更准确。 展开更多
关键词 方面级情感分析 依赖关系 词性 语法依赖树 图注意力网络
下载PDF
基于对抗性的权重注意力机制序列到序列模型的锂离子电池SOC估计方法
12
作者 陈治铭 刘建华 +1 位作者 柯添赐 陈可纬 《电工技术学报》 EI CSCD 北大核心 2024年第19期6244-6256,共13页
锂电池荷电状态(SOC)的准确估算是新能源技术发展中的一项关键技术,由于难以直接获取SOC准确数值,而面对此长序列预测问题,采用传统深度学习方法,其估算效果不佳。对此,该文提出一种对抗性的权重注意力序列到序列(AWAS)模型以估算SOC,... 锂电池荷电状态(SOC)的准确估算是新能源技术发展中的一项关键技术,由于难以直接获取SOC准确数值,而面对此长序列预测问题,采用传统深度学习方法,其估算效果不佳。对此,该文提出一种对抗性的权重注意力序列到序列(AWAS)模型以估算SOC,其中权重注意力机制通过引入额外的线性变换增强了注意力机制提取长序列依赖的能力。该模型由门控循环单元(GRU)作为编码器和解码器的基本构建模块。首先利用编码器提取特征间的相关信息;其次将包含特征信息的隐藏向量交由权重注意力处理,以深化特征间的关联性学习;再次由GRU进行解码;最后与生成对抗网络(GAN)中的鉴别器联合,提高模型估算能力。通过多步SOC估算任务的测试实验,该文提出的模型估算SOC的方均根误差及平均绝对百分比误差分别达到0.1695%和0.2096%;同时,在不同数据集的单步估算任务测试中,平均绝对误差和方均根误差达到0.1412%和0.1094%;相比稀疏化Informer模型在平均绝对误差评估指标上降低了45.7%。 展开更多
关键词 锂电池荷电状态 序列到序列模型 对抗生成网络 稀疏化Informer 注意力
下载PDF
基于多头注意力时空图神经网络的交通流预测
13
作者 肖琳 陈洪超 邹复民 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第9期78-85,共8页
准确的交通预测对于智能交通系统(ITS)至关重要。然而,由于复杂的时间和空间依赖关系,现有的交通流预测方法未能有效捕获路网的时空特征,并且忽略了路网交通数据的相关性在空间维度和时间维度上表现出的较强动态性。为了进一步提高预测... 准确的交通预测对于智能交通系统(ITS)至关重要。然而,由于复杂的时间和空间依赖关系,现有的交通流预测方法未能有效捕获路网的时空特征,并且忽略了路网交通数据的相关性在空间维度和时间维度上表现出的较强动态性。为了进一步提高预测精度,提出了一种基于多头注意力的时空图神经网络模型。首先,该模型构造了一个自适应图结构学习组件,该自适应图结构学习组件可以有效地捕获图结构的动态时空相关性。其次,该模型基于注意力机制分别设计了时间多头注意力模块和空间多头注意力模块,所设计的时空多头注意力模块可以有效地对路网的时空特征进行提取。最后,利用堆叠的时空卷积层对未来的交通状况进行预测。在开源数据集上的实验结果表明:该模型在时空特征提取以及长期预测方面表现优异,并且比基线方法取得了更精确的预测结果。 展开更多
关键词 交通工程 交通预测 智能交通系统 时空多头注意力 图神经网络 自适应图结构
下载PDF
双特征流融合和边界感知的显著性目标检测
14
作者 杨鑫 朱恒亮 毛国君 《计算机工程与应用》 CSCD 北大核心 2024年第10期227-236,共10页
显著性目标检测是计算机视觉领域的热门研究方向之一,许多基于深度学习的检测算法虽然已经取得了显著的成果,但是仍然存在待测目标漏检误检和边界模糊等问题。针对这些问题提出了一种基于双特征流融合和边界感知的目标检测算法,通过改... 显著性目标检测是计算机视觉领域的热门研究方向之一,许多基于深度学习的检测算法虽然已经取得了显著的成果,但是仍然存在待测目标漏检误检和边界模糊等问题。针对这些问题提出了一种基于双特征流融合和边界感知的目标检测算法,通过改变输入图像尺寸来丰富多尺度信息,并自顶向下逐层聚合特征得到精细的预测结果。首先将输入图像调整为两种不同分辨率分别送入编码器,提取丰富的多层级特征形成双特征流;其次将双特征流自顶向下逐层融合,生成由粗到细的显著图;最后构建了边界感知结构,凭借上下文语义信息的指导生成精细的物体轮廓。在五个公开数据集上进行了大量实验,实验结果表明,所提算法在结构相似性(Sm)等多个指标上取得了更高的检测精度,生成的显著图目标完整且边缘清晰。 展开更多
关键词 显著性目标检测 全卷积神经网络 多尺度学习 双特征流融合 边界感知
下载PDF
融合多狩猎协调策略的爬行动物搜索算法
15
作者 力尚龙 刘建华 贾鹤鸣 《计算机应用》 CSCD 北大核心 2024年第9期2818-2828,共11页
爬行动物搜索算法(RSA)具有较强的全局探索能力,但开发能力相对薄弱,在迭代后期无法较好地收敛。针对上述问题,综合教与学优化(TLBO)算法、二次插值的天牛须搜索(BAS)算法和透镜成像反向学习策略,提出一种融合多狩猎协调策略的爬行动物... 爬行动物搜索算法(RSA)具有较强的全局探索能力,但开发能力相对薄弱,在迭代后期无法较好地收敛。针对上述问题,综合教与学优化(TLBO)算法、二次插值的天牛须搜索(BAS)算法和透镜成像反向学习策略,提出一种融合多狩猎协调策略的爬行动物搜索算法(MHCS-RSA)。MHCS-RSA保留了RSA包围阶段(全局探索)和狩猎阶段(局部开发)中狩猎合作的位置更新公式,在狩猎阶段,将狩猎协调融合TLBO算法的学习阶段和二次插值的BAS进行位置更新,以增强算法的开发能力和收敛能力;此外,引入透镜成像反向学习策略以增强算法跳出局部最优的能力。在CEC 2020测试函数上的实验结果表明,MHCS-RSA具有良好的寻优能力、收敛能力以及鲁棒性。最后通过对拉力/压力弹簧设计问题和减速器设计问题的求解,进一步验证了MHCS-RSA求解实际问题的有效性。 展开更多
关键词 爬行动物搜索算法 教与学优化算法 二次插值的天牛须搜索算法 透镜成像反向学习 工程问题求解
下载PDF
多任务特征融合的CenterNet运动车辆检测方法
16
作者 李晓晗 刘石坚 +1 位作者 邹峥 戴宇晨 《陕西科技大学学报》 北大核心 2024年第5期206-213,224,共9页
基于深度学习技术的运动车辆检测是交通和计算机学科当下的研究热点.针对动态车辆检测任务中多尺度、目标重叠、难以区分动态和静态的车辆等难题,本文提出了一种多任务特征融合的CenterNet运动车辆检测方法.首先向网络中新增一支用于实... 基于深度学习技术的运动车辆检测是交通和计算机学科当下的研究热点.针对动态车辆检测任务中多尺度、目标重叠、难以区分动态和静态的车辆等难题,本文提出了一种多任务特征融合的CenterNet运动车辆检测方法.首先向网络中新增一支用于实现车辆分割的任务流,与原有目标检测流共同组成双流机制,然后使用恰当的方式实现双流特征融合,辅助增强目标检测流中的关键特征信息,此外,注意力机制的加入进一步优化了模型精度.在以公共数据集UA-DETRAC为基础所制作的测试集上,本文方法的平均精确率为70%,相比原始CenterNet模型提高了5.8%;帧率为30 f/s,在对比方法中具有最佳的速度与精度均衡性.大量实验表明,本文方法能够较好地胜任运动车辆的检测任务. 展开更多
关键词 运动车辆检测 分割 CenterNet 多任务学习 特征融合
下载PDF
基于深度强化学习的自动化码头AGV调度仿真和优化
17
作者 李斌 崔宏阳 《交通运输工程与信息学报》 2024年第3期134-151,共18页
为解决自动化集装箱码头的自动导引车(Automatic Guided Vehicle,AGV)调度模型中传统数学模型难以实时可视化调度和仿真模型内调度策略效率难以提升的问题,本文在建立的仿真模型和运筹规划模型的基础上研究了深度强化学习算法与AnyLogi... 为解决自动化集装箱码头的自动导引车(Automatic Guided Vehicle,AGV)调度模型中传统数学模型难以实时可视化调度和仿真模型内调度策略效率难以提升的问题,本文在建立的仿真模型和运筹规划模型的基础上研究了深度强化学习算法与AnyLogic自动化集装箱码头仿真模型交互的路径方法。随后,利用自动化集装箱码头进口箱仿真模型低任务产生率情况下AGV作业数据训练深度强化学习算法的网络模型,再将其加载在高任务和低任务产生率仿真模型中进而实现了对模型中AGV高效的作业调度,有效地突破了AnyLogic系统内策略效率难以提升的瓶颈和系统外CPLEX工具求解运筹规划数学模型时难以处理大规模数据、求解过程繁杂的局限。实验结果显示,深度强化学习DDQN算法在低任务产生率仿真模型中前端堆场的AGV作业调度中效率相较于AnyLogic系统内自定义表现最好的策略和系统外CPLEX求解的策略分别平均提升522 s和1604 s,在高任务产生率的自动化码头仿真模型前端和后端堆场AGV作业调度中相较于系统内自定义策略平均提升了3000 s。深度强化学习算法与AnyLogic仿真模型交互的路径方法不仅实现了可视化的实时动态调度,而且提升了AGV作业调度效率和整个自动化集装箱码头仿真模型的效率。 展开更多
关键词 水路运输 实时动态交互 深度强化学习 AGV作业调度 可视化动态调度
下载PDF
基于多尺度和双源运动感知的车辆检测方法
18
作者 李晓晗 刘石坚 +2 位作者 刘建华 戴宇晨 邹峥 《华东交通大学学报》 2024年第4期64-72,共9页
【目的】车辆检测是城市智能交通研究的重要部分,以交通监控图像作为输入,以运动车辆的检测作为目标,围绕其中的小目标问题、高密集问题以及运动属性问题开展研究。【方法】在无锚框CenteNet的基础上提出一种基于多尺度双源运动感知的... 【目的】车辆检测是城市智能交通研究的重要部分,以交通监控图像作为输入,以运动车辆的检测作为目标,围绕其中的小目标问题、高密集问题以及运动属性问题开展研究。【方法】在无锚框CenteNet的基础上提出一种基于多尺度双源运动感知的检测方法。首先,引入坐标注意力,并融合网络抽象层的多尺度和全局上下文特征,多层次多阶段地补充信息,提高模型对车辆和场景的理解力;其次,借助代表车辆实际运动特征的模糊纹理和代表车辆通用运动特征的光流知识,构建模型对运动车辆的感知能力。【结果】实验数据来源于公共数据集UA-DETRAC,以均值平均精度(mAP)和帧率(FPS)作为精确度和速度评价指标,将文章方法与已有主流方法进行比较,结果表明文章方法的mAP和FPS分别为72.46%和30 frame/s,在对比方法中具有最佳的速度与准确率均衡性。【结论】文章方法能够胜任运动车辆的检测任务。 展开更多
关键词 运动车辆检测 CenterNet 模糊纹理 光流 多任务学习
下载PDF
云平台动态弹性扩展关键技术研究
19
作者 朱铨 《福建工程学院学报》 CAS 2016年第1期71-75,共5页
根据实时交通大数据处理的具体需求,提出实时交通大数据处理云平台的逻辑体系结构,分别从Iaa S层、中间件层以及应用层探讨实现云平台动态弹性扩展的关键技术以及仍有待解决的关键问题。并搭建实时交通大数据处理云平台的原型系统,提出... 根据实时交通大数据处理的具体需求,提出实时交通大数据处理云平台的逻辑体系结构,分别从Iaa S层、中间件层以及应用层探讨实现云平台动态弹性扩展的关键技术以及仍有待解决的关键问题。并搭建实时交通大数据处理云平台的原型系统,提出实时交通大数据处理云平台资源调度策略。实验结果表明云平台的动态弹性扩展特性可满足实时交通大数据处理的性能需求。 展开更多
关键词 云计算 交通信息化 动态弹性扩展 资源调度
下载PDF
基于风险的三级检验通道数据分析与优化策略 被引量:1
20
作者 王嘉宏 兰金满 《现代管理》 2019年第1期9-23,共15页
为了研究旅客通关与安全检查过程的服务管理,本文建立了基于风险的三级检验通道排队系统的仿真模型。在所提出的仿真模型中,待检旅客根据其评估风险值被分类为三个风险等级,并且每位待检旅客被分配到相应于他(她)的风险值的检验通道以... 为了研究旅客通关与安全检查过程的服务管理,本文建立了基于风险的三级检验通道排队系统的仿真模型。在所提出的仿真模型中,待检旅客根据其评估风险值被分类为三个风险等级,并且每位待检旅客被分配到相应于他(她)的风险值的检验通道以进行安全检查。我们评估了计算机仿真实验所得到的数据,并对所研究的安检系统安全水平和平均等待时间进行了灵敏度分析。通过一系列的数据分析,本研究提出了选取模型变量的可执行优化策略。 展开更多
关键词 风险管理 排队系统 仿真实验 安全检查 数据分析
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部