期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
《圆锥和圆柱》的复习要点
1
作者 陈绍练 《小学教学研究》 1989年第5期27-27,26,共2页
圆锥和圆柱是立体几何部分。立体几何关键问题就是进行空间想象和逻辑推理,而小学生很难做到这一点。为此,我根据图形间的内在联系及数量、图形的变换特点,归纳了复习要点,供教师们参考。一、关于“削”的问题(即将一种物体削成另一物体... 圆锥和圆柱是立体几何部分。立体几何关键问题就是进行空间想象和逻辑推理,而小学生很难做到这一点。为此,我根据图形间的内在联系及数量、图形的变换特点,归纳了复习要点,供教师们参考。一、关于“削”的问题(即将一种物体削成另一物体)。1、把圆柱削成最大的圆锥,必须抓住两点:①圆柱的底就是圆锥的底;②圆柱的高就是圆锥的高,才能得到最大的圆锥。例如,一个圆柱的底面半径为r,高为 h,把它削成最大的圆锥体。问:A.圆锥的体积是多少?(V 锥=1/3πr^2h)B.圆柱削去的体积是多少?(V 削=V 柱-V 锥=πr^2h-1/3πr^2h=2/3πr^2h)C。削去的体积是圆柱体积的几分之几?(V 柱-V 锥/V 柱=2/3)2、把正方体削成最大的圆柱体或圆椎体,必须抓住两点:①正方体的棱长就是圆柱或圆锥的底面直径;②正方体的棱长也是圆柱或圆锥的高。例如,一个棱长为 a 的正方体削成最大的圆柱体。问:A. 展开更多
关键词 棱长 图形的 侧面积 导水管 带水 切一 块长 数量关系 己知 上图
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部