期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于SCResNeSt的低分辨率水稻害虫图像识别方法 被引量:7
1
作者 曾伟辉 张文凤 +2 位作者 陈鹏 胡根生 梁栋 《农业机械学报》 EI CAS CSCD 北大核心 2022年第9期277-285,共9页
针对稻田自然环境下害虫移动,难以近距离拍摄高质量图像,导致在现有识别模型检测时无法达到满意识别精度的问题,提出了一种基于SCResNeSt的低分辨率水稻害虫图像识别方法。首先,使用增强型超分辨率生成对抗网络(ESRGAN)对低分辨率图像... 针对稻田自然环境下害虫移动,难以近距离拍摄高质量图像,导致在现有识别模型检测时无法达到满意识别精度的问题,提出了一种基于SCResNeSt的低分辨率水稻害虫图像识别方法。首先,使用增强型超分辨率生成对抗网络(ESRGAN)对低分辨率图像进行数据增强,解决低分辨率水稻害虫有效信息少的问题;其次构建了SCResNeSt网络,使用3个连续的3×3卷积层替换ResNet50中第1个7×7卷积,以减少计算量;使用自校准卷积替代第2层卷积层中的3×3卷积,通过内部通信显式地扩展每个卷积层的视场,获取害虫图像的部分背景信息,从而丰富输出特征;在主干网络中使用ResNeSt block(Split-attention network block)进一步提升图像中害虫信息获取的准确性。最终,将优选模型移植到手机端,开发了轻量化的移动端水稻害虫识别系统。实验结果表明,与现有方法对比,ESRGAN数据增强方法可以恢复真实的作物害虫信息,SCResNeSt模型有效提高了水稻害虫的识别性能,识别精度达到91.20%,比原始ResNet50网络提高3.2个百分点,满足野外实际场景下的应用需求。本研究为水稻害虫智能化识别和防治提供了技术基础。 展开更多
关键词 水稻害虫图像 低分辨率 SCResNeSt 卷积神经网络 识别系统
下载PDF
SMS和双向特征融合的自然背景柑橘黄龙病检测技术 被引量:2
2
作者 曾伟辉 陈亚飞 +2 位作者 胡根生 鲍文霞 梁栋 《农业机械学报》 EI CAS CSCD 北大核心 2022年第11期280-287,共8页
柑橘黄龙病严重影响柑橘的产量和品质。在自然背景下,柑橘叶片之间存在相互遮挡以及尺寸变化大的问题,使得遮挡及小尺寸的黄龙病叶片容易漏检,而且由于黄龙病叶片的颜色、纹理特征与柑橘其他病害十分相似,容易存在误检的问题,导致现有... 柑橘黄龙病严重影响柑橘的产量和品质。在自然背景下,柑橘叶片之间存在相互遮挡以及尺寸变化大的问题,使得遮挡及小尺寸的黄龙病叶片容易漏检,而且由于黄龙病叶片的颜色、纹理特征与柑橘其他病害十分相似,容易存在误检的问题,导致现有的算法对自然背景柑橘黄龙病检测的精度不高。本研究提出了一种结合剪切混合拼接(Shearing mixed splicing, SMS)增广算法和双向特征融合的自然背景柑橘黄龙病检测方法,该方法通过SMS、镜像翻转和旋转方法对训练集和验证集进行了增广,增加了训练集和验证集图像中背景目标的数量和多样性;为了自适应地改变柑橘黄龙病检测中的局部采样点,增大有效感受野,使用可变形卷积替换骨干网络后3个卷积层中所有的标准卷积;为了减小自然背景的影响,使用全局上下文模块对骨干网络后3个卷积层输出的特征图进行特征增强,来建立有效的长距离依赖,以便更好的学习到全局上下文信息;使用双向融合特征金字塔,改善浅层特征和深层特征的信息交流路径,用以降低因柑橘黄龙病叶片尺寸变化大导致的漏检,提高小尺寸的柑橘黄龙病叶片的检测精度。实验结果表明,本研究提出的方法用于自然背景柑橘黄龙病的检测,平均精度可达84.8%,性能优于SSD、RetinaNet、YOLO v3、YOLO v5s、Faster RCNN、Cascade RCNN等目标检测方法。 展开更多
关键词 柑橘 黄龙病检测 自然背景 全局上下文模块 可变形卷积 双向特征融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部