期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
玉米作物系数无人机遥感协同地面水分监测估算方法研究 被引量:14
1
作者 张瑜 张立元 +3 位作者 Zhang Huihui 宋朝阳 蔺广花 韩文霆 《农业工程学报》 EI CAS CSCD 北大核心 2019年第1期83-89,共7页
该文研究不同水分胁迫条件下无人机遥感与地面传感器协同估算玉米作物系数的可行性。利用自主研发的六旋翼无人机遥感平台搭载多光谱传感器获取内蒙古达拉特旗昭君镇试验站不同水分胁迫下大田玉米冠层光谱影像,计算植被指数,采用经气象... 该文研究不同水分胁迫条件下无人机遥感与地面传感器协同估算玉米作物系数的可行性。利用自主研发的六旋翼无人机遥感平台搭载多光谱传感器获取内蒙古达拉特旗昭君镇试验站不同水分胁迫下大田玉米冠层光谱影像,计算植被指数,采用经气象因子和作物覆盖度校正后的FAO-56双作物系数法计算玉米的作物系数,研究作物系数与简单比值植被指数(simple ratio index,SR)、叶面积指数(leaf area index,LAI)和表层土壤含水率(surface soil moisture,SM)的相关关系,结果表明,作物系数与SR、LAI和SM的相关程度与水分胁迫程度有关,但均呈现出显著或极显著的线性关系,说明了基于这些指标建立作物系数估算模型的可能性。利用逐步回归分析方法建立了作物系数的估算模型,其估算模型,修正的决定系数、均方根误差和归一化的均方根误差分别为0.63、0.21、25.16%。经验证,模型决定系数、均方根误差和归一化的均方根误差分别为0.60、0.21、23.35%。研究结果可为利用无人机多光谱遥感平台进行作物系数估算提供技术参考。 展开更多
关键词 土壤水分 胁迫 无人机 作物系数 比值植被指数 叶面积指数
下载PDF
大田玉米作物系数无人机多光谱遥感估算方法 被引量:29
2
作者 韩文霆 邵国敏 +3 位作者 马代健 ZHANG Huihui 王毅 牛亚晓 《农业机械学报》 EI CAS CSCD 北大核心 2018年第7期134-143,共10页
作物系数K_c快速获取是大田作物蒸散量(Evapotranspiration,ET)估算的关键,为研究无人机多光谱遥感估算玉米作物系数的可行性和适用性,以2017年内蒙古达拉特旗昭君镇实验站大田玉米、土壤、气象等数据为基础,采用经气象因子和作物覆盖... 作物系数K_c快速获取是大田作物蒸散量(Evapotranspiration,ET)估算的关键,为研究无人机多光谱遥感估算玉米作物系数的可行性和适用性,以2017年内蒙古达拉特旗昭君镇实验站大田玉米、土壤、气象等数据为基础,采用经气象因子和作物覆盖度校正后的双作物系数法计算不同生长时期与不同水分胁迫玉米的作物系数,并使用自主研发的无人机多光谱系统航拍玉米的冠层多光谱(蓝、绿、红、红边、近红外,475~840 nm)影像,研究了不同生长时期(快速生长期、生长中期和生长后期)玉米的6种常用植被指数(Vegetation indices,VIs):归一化差值植被指数(NDVI)、土壤调节植被指数(SAVI)、增强型植被指数(EVI)、比值植被指数(SR)、绿度归一化植被指数(GNDVI)和抗大气指数(VARI),与作物系数K_c的关系模型及水分胁迫对其的影响。结果表明:玉米生长时期和水分胁迫是影响玉米VIs-K_c模型相关性的两个重要因素。不同生长时期玉米植被指数和K_c相关性不同:充分灌溉情况下,快速生长期玉米VIs-K_c模型的相关性(R2为0.731 2~0.940 1,p<0.05,n=25)与生长中期至生长后期VIs-K_c模型的相关性(R2为0.276 5~0.373 2,p<0.05,n=40)不同;水分胁迫情况下,快速生长期玉米VIs-K_c模型的相关性(R2为0.0002~0.0830,p<0.05,n=25)与生长中期至生长后期VIs-K_c模型的相关性(R2为0.366 2~0.848 7,p<0.05,n=40)不同。水分胁迫对VIs-K_c模型的相关性影响较大:快速生长期,充分灌溉玉米VIs-K_c模型的相关性(R2最大为0.940 1)比水分胁迫玉米VIs-K_c模型的相关性(R2最大为0.083 0)强;生长中期至生长后期,充分灌溉玉米VIsK_c模型的相关性(R2最大为0.373 2)比水分胁迫玉米VIs-K_c模型的相关性(R2最大为0.848 7)弱。部分植被指数和作物系数相关性较强;快速生长期充分灌溉玉米的VIs-K_c模型的相关性由大到小依次为:SR、EVI、VARI、GNDVI、SAVI、NDVI;生长中期至生长后期水分胁迫玉米的VIs-K_c模型的相关性由大到小依次为:SR、GNDVI、VARI、NDVI、SAVI、EVI;其中比值植被指数SR与作物系数K_c的相关性最好。结果表明采用无人机多光谱技术估算K_c具有一定的可行性。 展开更多
关键词 玉米 无人机遥感 作物系数 植被指数 蒸散量
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部