为了评估材料的抗原子氧腐蚀能力,首先在地面模拟设备上通过激光爆破法产生平动能约为4.5 e V的原子氧束源,然后利用此高能氧束源对苯基硅橡胶热控涂层材料进行暴露实验。材料受高能原子氧轰击而导致的影响,分别通过质量、X射线光电子...为了评估材料的抗原子氧腐蚀能力,首先在地面模拟设备上通过激光爆破法产生平动能约为4.5 e V的原子氧束源,然后利用此高能氧束源对苯基硅橡胶热控涂层材料进行暴露实验。材料受高能原子氧轰击而导致的影响,分别通过质量、X射线光电子能谱和扫描电镜进行表征。结果显示,原子氧累积通量9.5×10^(19)atoms/cm^2及8.5×10^(20)atoms/cm^2暴露实验后,材料表面微观形貌没有明显腐蚀,质量有少许增加,表面化学组成发生明显变化,分析认为是形成非挥发性物质SiO_x。实验结果表明,苯基硅橡胶热控涂层材料具有优越的抗原子氧腐蚀能力,推测其机理是形成的SiO_x钝化层作为保护层对其下方的材料进行保护,阻止原子氧对材料进一步腐蚀。展开更多
To investigate the thermal stability of ceramic-matrix composites,three kinds of C/C−ZrC−SiC composites with different Zr/Si molar ratios were synthesized by reactive melt infiltration.Employing region labeling method...To investigate the thermal stability of ceramic-matrix composites,three kinds of C/C−ZrC−SiC composites with different Zr/Si molar ratios were synthesized by reactive melt infiltration.Employing region labeling method,the high-temperature thermal stability of the composites was systematically studied by changing the temperature and holding time of thermal treatment.Results show that the mass loss rate of low Si composites has a growth trend with increasing temperature,and a crystal transformation from β-SiC toα-SiC occurs in the composites.In the calibrated area,SiC phase experiences Ostwald ripening and volume change with location migration,while ZrC phase experiences a re-sintering process with diffusion.Moreover,it is found that increasing temperature has a more obvious effect on the thermal stability than extending holding time,which is mainly attributed to the faster diffusion rate of atoms.展开更多
文摘为了评估材料的抗原子氧腐蚀能力,首先在地面模拟设备上通过激光爆破法产生平动能约为4.5 e V的原子氧束源,然后利用此高能氧束源对苯基硅橡胶热控涂层材料进行暴露实验。材料受高能原子氧轰击而导致的影响,分别通过质量、X射线光电子能谱和扫描电镜进行表征。结果显示,原子氧累积通量9.5×10^(19)atoms/cm^2及8.5×10^(20)atoms/cm^2暴露实验后,材料表面微观形貌没有明显腐蚀,质量有少许增加,表面化学组成发生明显变化,分析认为是形成非挥发性物质SiO_x。实验结果表明,苯基硅橡胶热控涂层材料具有优越的抗原子氧腐蚀能力,推测其机理是形成的SiO_x钝化层作为保护层对其下方的材料进行保护,阻止原子氧对材料进一步腐蚀。
基金supported by the National Natural Science Foundation of China(No.U19A2099)the CAS Key Laboratory of Carbon Materials,China(No.KLCMKFJJ2005)the Fund of Aerospace Research Institute of Material and Processing Technology,China(No.6142906200108).
文摘To investigate the thermal stability of ceramic-matrix composites,three kinds of C/C−ZrC−SiC composites with different Zr/Si molar ratios were synthesized by reactive melt infiltration.Employing region labeling method,the high-temperature thermal stability of the composites was systematically studied by changing the temperature and holding time of thermal treatment.Results show that the mass loss rate of low Si composites has a growth trend with increasing temperature,and a crystal transformation from β-SiC toα-SiC occurs in the composites.In the calibrated area,SiC phase experiences Ostwald ripening and volume change with location migration,while ZrC phase experiences a re-sintering process with diffusion.Moreover,it is found that increasing temperature has a more obvious effect on the thermal stability than extending holding time,which is mainly attributed to the faster diffusion rate of atoms.