期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
多模态MRI影像组学模型术前预测乳腺癌人表皮生长因子受体2表达状态
被引量:
1
1
作者
张韫
黄昊
+7 位作者
尹亮
王芷旋
陆思远
王霄霄
向玲玲
张晴
张九楼
单秀红
《中华肿瘤杂志》
CAS
CSCD
北大核心
2024年第5期428-437,共10页
目的探讨多模态MRI影像组学模型术前预测乳腺癌人表皮生长因子受体2(HER-2)表达状态的价值。方法纳入2021年1月至2023年5月镇江市第一人民医院经术后病理诊断的女性乳腺癌患者187例,其中HER-2阴性139例,HER-2阳性48例。将患者分为训练集...
目的探讨多模态MRI影像组学模型术前预测乳腺癌人表皮生长因子受体2(HER-2)表达状态的价值。方法纳入2021年1月至2023年5月镇江市第一人民医院经术后病理诊断的女性乳腺癌患者187例,其中HER-2阴性139例,HER-2阳性48例。将患者分为训练集(131例)和验证集(56例),利用训练集构建预测模型,利用验证组对预测模型进行验证。在T2加权成像(T2WI)、表观扩散系数(ADC)及动态增强扫描第2期(DCE-2)、第6期(DCE-6)MRI图像中逐层勾画乳腺癌原发灶三维立体感兴趣区,使用Pyradiomic软件提取960个影像组学特征,通过重复性分析、Pearson相关分析及最小绝对收缩和选择算子回归方法进行筛选和降维后,建立影像组学标签,采用logistic回归分析分别构建预测乳腺癌HER-2表达状态的T2WI影像组学模型、ADC影像组学模型、DCE-2影像组学模型、DCE-6影像组学模型和联合序列影像组学模型。基于患者的临床、病理及MRI影像特征,采用单因素和多因素logistic回归分析构建临床病理MRI特征模型。利用患者的影像组学标签联合筛选得到的有统计学意义的临床病理MRI特征,构建列线图模型。采用受试者工作特性(ROC)曲线评价各模型的预测效能,绘制决策曲线评价列线图模型的临床获益。结果成功构建了预测乳腺癌HER-2表达状态的T2WI影像组学模型、ADC影像组学模型、DCE-2影像组学模型、DCE-6影像组学模型、联合序列影像组学模型、临床病理MRI特征模型和列线图模型。ROC曲线分析显示,在训练集和验证集中,T2WI影像组学模型的曲线下面积(AUC)分别为0.797和0.760,ADC影像组学模型的AUC分别为0.776和0.634,DCE-2影像组学模型的AUC分别为0.804和0.759,DCE-6影像组学模型的AUC分别为0.869和0.798,联合序列影像组学模型的AUC分别为0.908和0.847,临床病理MRI特征模型的AUC分别为0.703和0.693,列线图模型的AUC分别为0.938和0.859。在训练集中,联合序列影像组学模型的AUC高于T2WI、ADC、DCE-2影像组学模型和临床病理MRI特征模型(均P<0.05);在验证集中,联合序列影像组学模型的AUC高于ADC影像组学模型(P<0.01),但与临床病理MRI特征模型差异无统计学意义(P>0.05)。在训练集中列线图模型的AUC高于全部单模态影像组学模型和临床病理MRI特征模型(均P<0.05),在验证集中列线图模型的AUC高于ADC影像组学模型、DCE-2影像组学模型和临床病理MRI特征模型(均P<0.05)。在训练集和验证集中列线图模型的AUC与联合序列影像组学模型差异均无统计学意义(均P>0.05)。决策曲线显示,列线图模型术前预测乳腺癌HER-2表达状态的临床净获益明显优于临床病理预测模型。结论基于T2WI、ADC和早期-延迟期DCE MRI的多模态MRI影像组学模型能高效预测术前乳腺癌HER-2表达状态,有望用于乳腺癌HER-2状态的术前无创评估,为乳腺癌术前新辅助治疗方案的决策提供依据。
展开更多
关键词
乳腺肿瘤
人表皮生长因子受体2
磁共振成像
影像组学
预测模型
原文传递
题名
多模态MRI影像组学模型术前预测乳腺癌人表皮生长因子受体2表达状态
被引量:
1
1
作者
张韫
黄昊
尹亮
王芷旋
陆思远
王霄霄
向玲玲
张晴
张九楼
单秀红
机构
江苏大学医学院
苏州高新区中医医院影像科
镇江市第一人民
医院
、江苏大学附属人民
医院
乳房外
科
镇江市第一人民
医院
、江苏大学附属人民
医院
医学
影像
科
镇江市第一人民
医院
、江苏大学附属人民
医院
超声
科
南京医
科
大学第一附属
医院
放射
科
、南京医
科
大学
影像
学院人工智能
影像
实验室
出处
《中华肿瘤杂志》
CAS
CSCD
北大核心
2024年第5期428-437,共10页
基金
镇江市科技创新项目(SH2020040)
金山医者医学领域人才培养计划(2021-JSYZ-3,2023-JSYZ-15)
+1 种基金
江苏大学医教协同创新基金(JDYY2023018)
镇江市第一人民医院院级科研基金(Y2021011-S,Y2022024)。
文摘
目的探讨多模态MRI影像组学模型术前预测乳腺癌人表皮生长因子受体2(HER-2)表达状态的价值。方法纳入2021年1月至2023年5月镇江市第一人民医院经术后病理诊断的女性乳腺癌患者187例,其中HER-2阴性139例,HER-2阳性48例。将患者分为训练集(131例)和验证集(56例),利用训练集构建预测模型,利用验证组对预测模型进行验证。在T2加权成像(T2WI)、表观扩散系数(ADC)及动态增强扫描第2期(DCE-2)、第6期(DCE-6)MRI图像中逐层勾画乳腺癌原发灶三维立体感兴趣区,使用Pyradiomic软件提取960个影像组学特征,通过重复性分析、Pearson相关分析及最小绝对收缩和选择算子回归方法进行筛选和降维后,建立影像组学标签,采用logistic回归分析分别构建预测乳腺癌HER-2表达状态的T2WI影像组学模型、ADC影像组学模型、DCE-2影像组学模型、DCE-6影像组学模型和联合序列影像组学模型。基于患者的临床、病理及MRI影像特征,采用单因素和多因素logistic回归分析构建临床病理MRI特征模型。利用患者的影像组学标签联合筛选得到的有统计学意义的临床病理MRI特征,构建列线图模型。采用受试者工作特性(ROC)曲线评价各模型的预测效能,绘制决策曲线评价列线图模型的临床获益。结果成功构建了预测乳腺癌HER-2表达状态的T2WI影像组学模型、ADC影像组学模型、DCE-2影像组学模型、DCE-6影像组学模型、联合序列影像组学模型、临床病理MRI特征模型和列线图模型。ROC曲线分析显示,在训练集和验证集中,T2WI影像组学模型的曲线下面积(AUC)分别为0.797和0.760,ADC影像组学模型的AUC分别为0.776和0.634,DCE-2影像组学模型的AUC分别为0.804和0.759,DCE-6影像组学模型的AUC分别为0.869和0.798,联合序列影像组学模型的AUC分别为0.908和0.847,临床病理MRI特征模型的AUC分别为0.703和0.693,列线图模型的AUC分别为0.938和0.859。在训练集中,联合序列影像组学模型的AUC高于T2WI、ADC、DCE-2影像组学模型和临床病理MRI特征模型(均P<0.05);在验证集中,联合序列影像组学模型的AUC高于ADC影像组学模型(P<0.01),但与临床病理MRI特征模型差异无统计学意义(P>0.05)。在训练集中列线图模型的AUC高于全部单模态影像组学模型和临床病理MRI特征模型(均P<0.05),在验证集中列线图模型的AUC高于ADC影像组学模型、DCE-2影像组学模型和临床病理MRI特征模型(均P<0.05)。在训练集和验证集中列线图模型的AUC与联合序列影像组学模型差异均无统计学意义(均P>0.05)。决策曲线显示,列线图模型术前预测乳腺癌HER-2表达状态的临床净获益明显优于临床病理预测模型。结论基于T2WI、ADC和早期-延迟期DCE MRI的多模态MRI影像组学模型能高效预测术前乳腺癌HER-2表达状态,有望用于乳腺癌HER-2状态的术前无创评估,为乳腺癌术前新辅助治疗方案的决策提供依据。
关键词
乳腺肿瘤
人表皮生长因子受体2
磁共振成像
影像组学
预测模型
Keywords
Breast neoplasms
Human epidermal growth factor 2
Magnetic resonance imaging
Radiomics
Prediction model
分类号
R737.9 [医药卫生—肿瘤]
原文传递
题名
作者
出处
发文年
被引量
操作
1
多模态MRI影像组学模型术前预测乳腺癌人表皮生长因子受体2表达状态
张韫
黄昊
尹亮
王芷旋
陆思远
王霄霄
向玲玲
张晴
张九楼
单秀红
《中华肿瘤杂志》
CAS
CSCD
北大核心
2024
1
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部