期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Boosting方法在网络攻击分类中的性能分析 被引量:2
1
作者 靳燕 姚悦 《网络空间安全》 2016年第6期25-28,共4页
针对KDD CUP99网络攻击数据集的分类建模问题,论文结合NaiveBayes、RIPPER和SVM三类算法分别介绍了各自的学习过程。Boosting方法属提升算法,通过多轮迭代实现弱分类器的加权组合,最终决策结果较基算法较为理想。为分析Boosting方法在KD... 针对KDD CUP99网络攻击数据集的分类建模问题,论文结合NaiveBayes、RIPPER和SVM三类算法分别介绍了各自的学习过程。Boosting方法属提升算法,通过多轮迭代实现弱分类器的加权组合,最终决策结果较基算法较为理想。为分析Boosting方法在KDD CUP99集上的分类性能,实验选用AdaBoost算法为代表,将以上三类算法作为基算法,依次应用到数据集上。分类预测结果表明:RIPPER算法的总体性能优于其他算法,尤其对少类的分类效果较好,使用AdaBoost后,性能改善明显。在不考虑分类效率的前提下,论文所提方法中,基于RIPPER的Boosting对KDD CUP99更为适合。 展开更多
关键词 KDD CUP99 分类预测 BOOSTING方法 性能提升
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部