为验证数值模拟结果的正确性,建立了氯碱工业离子膜电解槽冷模实验装置,对电解槽内液体速度和气含率进行了实验测量,实验数据验证了模拟结果。利用实验和数值模拟方法对不同工况下气含率和气体体积分布进行了研究;对循环板上开口处膜侧...为验证数值模拟结果的正确性,建立了氯碱工业离子膜电解槽冷模实验装置,对电解槽内液体速度和气含率进行了实验测量,实验数据验证了模拟结果。利用实验和数值模拟方法对不同工况下气含率和气体体积分布进行了研究;对循环板上开口处膜侧瞬时压力进行了监测,分析了该处压力波动特性。结果表明,随着气液流量增大,电解槽内气含率增大,顶部气体滞留层增厚。当电流密度为10 k A×m^(-2)时,槽内气含率达到9.08%,为4.5 k A×m^(-2)时的近3倍。气体体积分数沿电解槽竖直方向逐渐增大,在膜与槽板夹角处最大。循环板上开口处膜侧压力信号波动明显,高频脉动主要由液体流动引起,低频脉动主要由气体流动引起。展开更多
为考察电流密度对氯碱工业中离子膜电解槽内流体传递特性的影响,利用流体力学计算软件,对不同电流密度下电解槽阳极室进行了数值模拟,得到了阳极室单个格栅内流体的速度、温度和浓度分布。以液体循环量、膜附近处速度的最大值、膜表面...为考察电流密度对氯碱工业中离子膜电解槽内流体传递特性的影响,利用流体力学计算软件,对不同电流密度下电解槽阳极室进行了数值模拟,得到了阳极室单个格栅内流体的速度、温度和浓度分布。以液体循环量、膜附近处速度的最大值、膜表面温度和浓度为指标,考察了不同电流密度下电解槽的运行情况。结果表明:随着电流密度的增加,电解槽内液体循环量增大,膜表面温度升高,盐水浓度降低;在电流密度为4.5 k A·m-2的典型工况下,电解槽内平均温度为86.39℃,膜表面平均温度为87.40℃;当电流密度提高时,可以通过降低进口溶液温度,获得与典型工况相近的电解槽内平均温度和膜表面平均温度。展开更多
文摘为验证数值模拟结果的正确性,建立了氯碱工业离子膜电解槽冷模实验装置,对电解槽内液体速度和气含率进行了实验测量,实验数据验证了模拟结果。利用实验和数值模拟方法对不同工况下气含率和气体体积分布进行了研究;对循环板上开口处膜侧瞬时压力进行了监测,分析了该处压力波动特性。结果表明,随着气液流量增大,电解槽内气含率增大,顶部气体滞留层增厚。当电流密度为10 k A×m^(-2)时,槽内气含率达到9.08%,为4.5 k A×m^(-2)时的近3倍。气体体积分数沿电解槽竖直方向逐渐增大,在膜与槽板夹角处最大。循环板上开口处膜侧压力信号波动明显,高频脉动主要由液体流动引起,低频脉动主要由气体流动引起。
文摘为考察电流密度对氯碱工业中离子膜电解槽内流体传递特性的影响,利用流体力学计算软件,对不同电流密度下电解槽阳极室进行了数值模拟,得到了阳极室单个格栅内流体的速度、温度和浓度分布。以液体循环量、膜附近处速度的最大值、膜表面温度和浓度为指标,考察了不同电流密度下电解槽的运行情况。结果表明:随着电流密度的增加,电解槽内液体循环量增大,膜表面温度升高,盐水浓度降低;在电流密度为4.5 k A·m-2的典型工况下,电解槽内平均温度为86.39℃,膜表面平均温度为87.40℃;当电流密度提高时,可以通过降低进口溶液温度,获得与典型工况相近的电解槽内平均温度和膜表面平均温度。