期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
气相晶化法合成SAPO-34分子筛 被引量:14
1
作者 李建青 王晓梅 +2 位作者 石梅 张秀成 程惠亭 《石油化工》 EI CAS CSCD 北大核心 2007年第7期664-669,共6页
分别以磷酸、拟薄水铝石和硅溶胶为磷源、铝源和硅源,吗啉和三乙胺为模板剂,采用气相晶化法在不同条件下合成了SAPO-34分子筛。研究了各种因素对气相晶化法合成SAPO-34分子筛的影响,确定了制备SAPO-34分子筛的最佳合成条件。干胶配比、... 分别以磷酸、拟薄水铝石和硅溶胶为磷源、铝源和硅源,吗啉和三乙胺为模板剂,采用气相晶化法在不同条件下合成了SAPO-34分子筛。研究了各种因素对气相晶化法合成SAPO-34分子筛的影响,确定了制备SAPO-34分子筛的最佳合成条件。干胶配比、干胶中的硅铝比和晶化温度对气相晶化法合成SAPO-34分子筛有重要影响,最佳干胶配比为n(SiO2)∶n(Al2O3)∶n(P2O5)∶n(H2O)=1.0∶1∶2∶30,最佳晶化温度为180℃,但在160,140℃时也能合成出纯SAPO-34分子筛。模板剂不同,合成的分子筛不同,搅拌有利于气相晶化。以制备的SAPO-34分子筛为催化剂催化甲醇制低碳烯烃反应结果表明,甲醇转化率达98%以上,乙烯和丙烯的总选择性达80%以上。 展开更多
关键词 气相晶化法 SAPO-34分子筛 吗啉 三乙胺 模板剂 甲醇制低碳烯烃 催化剂
下载PDF
2D mesoporous ultrathin Cd0.5Zn0.5S nanosheet:Fabrication mechanism and application potential for photocatalytic H2 evolution 被引量:10
2
作者 Wenhua Xue Wenxi Chang +2 位作者 Xiaoyun Hu Jun Fan Enzhou Liu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第1期152-163,共12页
Two-dimensional mesoporous ultrathin Cd0.5Zn0.5S nanosheets with a thickness of~1.5 nm were fabricated using a multistep chemical transformation strategy involving inorganic–organic hybrid ZnS-ethylenediamine(denoted... Two-dimensional mesoporous ultrathin Cd0.5Zn0.5S nanosheets with a thickness of~1.5 nm were fabricated using a multistep chemical transformation strategy involving inorganic–organic hybrid ZnS-ethylenediamine(denoted as ZnS(en)0.5)as a hard template.Inorganic–organic hybrid ZnS(en)0.5,Cd0.5Zn0.5S(en)x,and Cd0.5Zn0.5S nanosheets were sequentially fabricated,and their transformation processes were analyzed in detail.The fabricated Cd0.5Zn0.5S nanosheets exhibited high photocatalytic hydrogen evolution reaction activity in the presence of a sacrificial agent.The Cd0.5Zn0.5S nanosheets exhibited remarkably high H2 production activity of~1395μmol∙h^−1∙g^−1 in pure water with no co-catalyst,which is the highest value reported thus far for bare photocatalysts,to the best of our knowledge.The high activity of these nanosheets is attributed to their distinct nanostructure(e.g.,short transfer distance of photoinduced charge carriers,large number of unsaturated surface atoms,and large surface area).Moreover,ternary NiCo2S4 nanoparticles were employed to facilitate the charge separation and enhance the surface kinetics of H2 evolution.The H2 production rate reached~62.2 and~2436μmol∙h^−1∙g^−1 in triethanolamine and pure water,respectively,over the NiCo2S4/Cd0.5Zn0.5S heterojunctions.The result indicated that the Schottky junction was critical to the enhanced activity.The proposed method can be used for fabricating other highly efficient CdZnS-based photocatalysts for solar-energy conversion or other applications. 展开更多
关键词 MESOPOROUS ULTRATHIN Cd0.5Zn0.5S nanosheets PHOTOCATALYSIS Hydrogen evolution
下载PDF
A new solid acid SO_4^(2-)/TiO_2 catalyst modified with tin to synthesize 1,6-hexanediol diacrylate 被引量:8
3
作者 Xiaxia Bai Liuyi Pan +2 位作者 Peng Zhao Daidi Fan Wenhong Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第9期1469-1476,共8页
A new solid acid catalyst,SO4^2-/TiO2 modified with tin,was prepared using a sol-gel method and its physicochemical properties were revealed by nitrogen adsorption-desorption,X-ray powder diffraction,scanning electron... A new solid acid catalyst,SO4^2-/TiO2 modified with tin,was prepared using a sol-gel method and its physicochemical properties were revealed by nitrogen adsorption-desorption,X-ray powder diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,infrared spectroscopy of adsorbed pyridine,temperature-programmed desorption of ammonia and thermal gravimetric analysis.The structure,acidity and thermal stability of the SO4^2-/TiO2-SnO2 catalyst were studied.Incorporating tin enlarged the specific surface area and decreased crystallite size of the SO4^2-/TiO2 catalyst.The total acid sites of the modified catalyst increased and Bronsted acid strength remarkably increased with increasing tin content.The decomposition temperature of sulfate radical in the modified catalyst was 100 ℃ greater and its mass loss was more than twice that of the SO4^2-/TiO2 catalyst.The SO4^2-/TiO2-SnO2 catalyst was designed to synthesize 1,6-hexanediol diacrylate by esterification of 1,6-hexanediol with crylic acid.The yield of 1,6-hexanediol diacrylate exceeded 87% under the optimal reaction conditions:crylic acid to 1,6-hexanediol molar ratio = 3.5,catalyst loading = 7%,reaction temperature = 130 ℃ and reaction time = 3 h.The modified catalyst exhibited excellent reusability and after 10 cycles the conversion of 1,6-hexanediol was above 81%. 展开更多
关键词 Solid acid catalyst TIN Sol-gel method 1 6-Hexanediol diacrylate Esterification reaction
下载PDF
Enhanced photocatalytic H_2 production over dual-cocatalyst-modified g-C_3N_4 heterojunctions 被引量:8
4
作者 Zong Li Yongning Ma +2 位作者 Xiaoyun Hu Enzhou Liu Jun Fan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第3期434-445,共12页
Ag nanoparticles (NPs) were deposited on the surface of g-C3N4 (CN) by an in situ calcination method. NiS was successfully loaded onto the composites by a hydrothermal method. The results showed that the 10 wt%-NiS/1.... Ag nanoparticles (NPs) were deposited on the surface of g-C3N4 (CN) by an in situ calcination method. NiS was successfully loaded onto the composites by a hydrothermal method. The results showed that the 10 wt%-NiS/1.0 wt%-Ag/CN composite exhibits excellent photocatalytic H2 generation performance under solar-light irradiation. An H2 production rate of 9.728 mmol·g^-1·h^-1 was achieved, which is 10.82-, 3.45-, and 2.77-times higher than those of pure g-C3N4, 10 wt%-NiS/CN, and 1.0 wt%-Ag/CN composites, respectively. This enhanced photocatalytic H2 generation can be ascribed to the co-decoration of Ag and NiS on the surface of g-C3N4, which efficiently improves light harvesting capacity, photogenerated charge carrier separation, and photocatalytic H2 production kinetics. Thus, this study demonstrates an effective strategy for constructing excellent g-C3N4-related composite photocatalysts for H2 production by using different co-catalysts. 展开更多
关键词 PHOTOCATALYSIS Photocatalytic H2 generation g-C3N4 Ag NIS
下载PDF
Preparative separation of high-purity troxerutin and related substances from mother liquor of troxerutin by silica gel column chromatography and semi-preparative liquid chromatography 被引量:1
5
作者 Shaojing Liu Bei Qin +3 位作者 Hongfang Han Li Li Lili Yu Xiaojing Xu 《Journal of Chinese Pharmaceutical Sciences》 CAS CSCD 2020年第7期487-493,共7页
Troxerutin(TRO)is a mixture of semi-synthetic flavonoids prepared by hydroxyethylation of rutin,and it is commonly used for the treatment of cerebrovascular diseases.The main active ingredient is trishydroxyethyl ruti... Troxerutin(TRO)is a mixture of semi-synthetic flavonoids prepared by hydroxyethylation of rutin,and it is commonly used for the treatment of cerebrovascular diseases.The main active ingredient is trishydroxyethyl rutin.The mother liquor of TRO contains a lot of TRO and other derivatives of hydroxyethylated rutin.In order to make full use of the mother liquor of TRO,an efficient method was developed for recovering high-purity TRO from mother liquor of TRO by combining silica gel column chromatography with semi-preparative liquid chromatography.In the silica gel column chromatographic separation,the ratio of silica gel to sample and eluent composition were investigated to obtain optimum separation effect.The results showed that when the ratio of silica gel to sample was 50,and acetone–ethyl acetate–water–glacial acetic acid(10:10:3:1,v/v/v/v)was used as the eluent,the separation effect of TRO and adjacent impurities was good.Moreover,150 g of TRO with a purity of 80%could be obtained from 1 kg of mother liquor of TRO by the silica gel column chromatographic separation,and the results were consistent with the quality standard of TRO raw material.Subsequently,the semi-preparative HPLC was performed,and 100 g TRO with a purity of up to 98%(w/w)was obtained.Meanwhile,tetrahydroxyethylrutin and tetrahydroxyethylquercetin with purity greater than 98%were obtained.This work proposed the separation and preparation of TRO with high-purity from the production waste of TRO for the first time,which had certain environmental benefits and economic benefits. 展开更多
关键词 Mother liquor of troxerutin TROXERUTIN Silica-gel column chromatography Semi-preparative HPLC NMR
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部