Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of...Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of the parameters was proposed based on the finite element (FE) simulation, and the significance analysis of the processing parameters on the forming quality in terms of the maximum wall thinning ratio and the maximum cross section distortion degree was implemented using the fractional factorial design. The optimum value of the significant parameter, the clearance between the tube and the wiper die, was obtained, and the values of the other parameters, including the friction coefficients and the clearances between the tube and the dies, the mandrel extension length and the boost velocity were estimated. The results are applied to aluminum alloy tube NC bending d50 mm×1 mm×75 mm and d70 mm×1.5 mm×105 mm (initial tube outside diameter D0 × initial tube wall thickness t0 × bending radius R), and qualified tubes are produced.展开更多
Microstructural development in hot working of TA15titanium alloy with primary stripαstructure was investigated withthe aim to globularizeαstrips.Results show that the mechanisms of morphology transformation are the ...Microstructural development in hot working of TA15titanium alloy with primary stripαstructure was investigated withthe aim to globularizeαstrips.Results show that the mechanisms of morphology transformation are the same to the spheroidizationmechanisms of lamellar structure.Boundary splitting and termination migration are more important than coarsening due to the largesize of stripα.Theαstrips are stable in annealing due to the unfavorable geometrical orientation of intra-αboundaries,the largethickness of strip and the geometrical stability ofαparticles.Predeformation and low speed deformation accelerate globularization ofαstrips in the following ways:direct changing of particle shape,promotion of boundary splitting and termination migration byincreasing high angle grain boundaries and interfacial area,promotion of coarsening by forming dislocation structures.Largepredeformation combined with high temperature annealing is a feasible way to globularize stripα.展开更多
To control the tri-modal microstructure and performance,a prediction model of tri-modal microstructure in the isothermal local loading forming of titanium alloy was developed.The staged isothermal local loading experi...To control the tri-modal microstructure and performance,a prediction model of tri-modal microstructure in the isothermal local loading forming of titanium alloy was developed.The staged isothermal local loading experiment on TA15alloy indicates that there exist four important microstructure evolution phenomena in the development of tri-modal microstructure,i.e.,the generation of lamellarα,content variation of equiaxedα,spatial orientation change of lamellarαand globularization of lamellarα.Considering the laws of these microstructure phenomena,the microstructure model was established to correlate the parameters of tri-modal microstructure and processing conditions.Then,the developed microstructure model was integrated with finite element(FE)model to predict the tri-modal microstructure in the isothermal local loading forming.Its reliability and accuracy were verified by the microstructure observation at different locations of sample.Good agreements between the predicted and experimental results suggest that the developed microstructure model and its combination with FE model are effective in the prediction of tri-modal microstructure in the isothermal local loading forming of TA15alloy.展开更多
To study deformation banding inβworking of TA15titanium alloy,hot simulation compression experiments were carried out on a Gleeble3500thermal simulator,and the microstructure was investigated by optical microscopy(OM...To study deformation banding inβworking of TA15titanium alloy,hot simulation compression experiments were carried out on a Gleeble3500thermal simulator,and the microstructure was investigated by optical microscopy(OM)and electron backscattered diffraction(EBSD).It is found that inβworking of TA15titanium alloy,deformation banding is still an important grain refinement mechanism up to temperature as high as0.7Tm(Tm is the melting temperature).Boundaries of deformation bands(DBBs)may be sharp or diffusive.Sharp DBBs retard discontinuous dynamic recrystallization(DDRX)by prohibiting nucleation,while the diffusive ones are sources of continuous dynamic recrystallization(CDRX).Deformation banding is more significant at high strain rate and large initial grain size.The average width of grain subdivisions is sensitive to strain rate but less affected by temperature and initial grain size.Multi-directional forging which produces crossing DDBs is potential to refine microstructure of small-size forgings.展开更多
The KxNa1-xNbO3 nanopowders with cubic-like morphology and an average size of about 50 nm were synthesized by sol-gel auto-combustion method.And then,the ceramics were prepared and the phase transition,microstructure ...The KxNa1-xNbO3 nanopowders with cubic-like morphology and an average size of about 50 nm were synthesized by sol-gel auto-combustion method.And then,the ceramics were prepared and the phase transition,microstructure and electrical properties of the KxNa1-xNbO3 ceramics were investigated.Pure perovskite phases of the KxNa1-xNbO3 ceramics were confirmed by XRD patterns and the K0.50Na0.50NbO3 ceramics show the coexistence of orthorhombic and monoclinic structures.SEM micrographs show that all samples have bimodal grain size distributions and the number of the small grains decrease with increasing K+content in the bimodal grain size distribution system.The K0.50Na0.50NbO3 ceramics with the uniform grain size and the maximum density show excellent electrical properties withεr=467.40,tanδ=0.020,d33=128 pC/N and kp=0.32 at the room temperature,demonstrating that the properties of the K0.50Na0.50NbO3 powers prepared by sol-gel auto-combustion are excellent and the ceramics are promising lead-free piezoelectric materials.展开更多
The morphology evolution and phase transformation of Al9(Mn,Ni)2 eutectic phase in an Al-4Ni-2Mn alloy during heat treatment at 600°C were studied by scanning electron microscopy(SEM)and transmission electron mic...The morphology evolution and phase transformation of Al9(Mn,Ni)2 eutectic phase in an Al-4Ni-2Mn alloy during heat treatment at 600°C were studied by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).Results show that nearly all of the eutectic fibers change into prolate ellipsoid and spherical particles in the process of heat treatment,and Ostwald ripening phenomenon occurs in the eutectic region with the increase of the heat treatment time.Besides,a phase transformation from Al9(Mn,Ni)2 to O-phase is confirmed.The morphologies of the transformed particles indicate that the O-phase preferentially nucleates on the specific crystal plane of the Al9(Mn,Ni)2 eutectic phase and grows in a certain direction.During the phase transformation,the(010)[001]slip system in O-phase is activated,and the resultant slip traces appear on the surface of some O-phase particles.展开更多
This vertically self‐pillared(VSP)structure extends the application range of traditional porous materials with facile mass/ion transport and enhanced reaction kinetics.Here,we prepare a single crystal metal‐organic ...This vertically self‐pillared(VSP)structure extends the application range of traditional porous materials with facile mass/ion transport and enhanced reaction kinetics.Here,we prepare a single crystal metal‐organic framework(MOF),employing the ZIF‐67 structure as a proof of concept,which is constructed by vertically self‐pillared nanosheets(VSP‐MOF).We further converted VSP‐MOF into VSP‐cobalt sulfide(VSP‐CoS2)through a sulfidation process.Catalysis plays an important role in almost all battery technologies;for metallic batteries,lithium anodes exhibit a high theoretical specific capacity,low density,and low redox potential.However,during the half‐cell reaction(Li++e=Li),uncontrolled dendritic Li penetrates the separator and solid electrolyte interphase layer.When employed as a composite scaffold for lithium metal deposition,there are many advantage to using this framework:1)the VSP‐CoS2 substrate provides a high specific surface area to dissipate the ion flux and mass transfer and acts as a pre‐catalyst,2)the catalytic Co center favors the charge transfer process and preferentially binds the Li+with the enhanced electrical fields,and 3)the VSP structure guides the metallic propagation along the nanosheet 2D orientation without the protrusive dendrites.All these features enable the VSP structure in metallic batteries with encouraging performances.展开更多
基金Projects (50905144, 50875216) supported by the National Natural Science Foundation of ChinaProject (09-10) supported by the State Key Laboratory of Materials Processing and Die & Mould Technology, ChinaProject (JC201028) supported by the Northwestern Polytechnical University Foundation for Fundamental Research, China
文摘Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of the parameters was proposed based on the finite element (FE) simulation, and the significance analysis of the processing parameters on the forming quality in terms of the maximum wall thinning ratio and the maximum cross section distortion degree was implemented using the fractional factorial design. The optimum value of the significant parameter, the clearance between the tube and the wiper die, was obtained, and the values of the other parameters, including the friction coefficients and the clearances between the tube and the dies, the mandrel extension length and the boost velocity were estimated. The results are applied to aluminum alloy tube NC bending d50 mm×1 mm×75 mm and d70 mm×1.5 mm×105 mm (initial tube outside diameter D0 × initial tube wall thickness t0 × bending radius R), and qualified tubes are produced.
基金Projects(51205317,51575449) supported by the National Natural Science Foundation of ChinaProject(3102015AX004) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(104-QP-2014) supported by the Research Fund of the State Key Laboratory of Solidification Processing,China
文摘Microstructural development in hot working of TA15titanium alloy with primary stripαstructure was investigated withthe aim to globularizeαstrips.Results show that the mechanisms of morphology transformation are the same to the spheroidizationmechanisms of lamellar structure.Boundary splitting and termination migration are more important than coarsening due to the largesize of stripα.Theαstrips are stable in annealing due to the unfavorable geometrical orientation of intra-αboundaries,the largethickness of strip and the geometrical stability ofαparticles.Predeformation and low speed deformation accelerate globularization ofαstrips in the following ways:direct changing of particle shape,promotion of boundary splitting and termination migration byincreasing high angle grain boundaries and interfacial area,promotion of coarsening by forming dislocation structures.Largepredeformation combined with high temperature annealing is a feasible way to globularize stripα.
基金Projects(51605388,51575449)supported by the National Natural Science Foundation of ChinaProject(B08040)supported by the "111" Project,China+1 种基金Project(131-QP-2015)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject supported by the Open Research Fund of State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,China
文摘To control the tri-modal microstructure and performance,a prediction model of tri-modal microstructure in the isothermal local loading forming of titanium alloy was developed.The staged isothermal local loading experiment on TA15alloy indicates that there exist four important microstructure evolution phenomena in the development of tri-modal microstructure,i.e.,the generation of lamellarα,content variation of equiaxedα,spatial orientation change of lamellarαand globularization of lamellarα.Considering the laws of these microstructure phenomena,the microstructure model was established to correlate the parameters of tri-modal microstructure and processing conditions.Then,the developed microstructure model was integrated with finite element(FE)model to predict the tri-modal microstructure in the isothermal local loading forming.Its reliability and accuracy were verified by the microstructure observation at different locations of sample.Good agreements between the predicted and experimental results suggest that the developed microstructure model and its combination with FE model are effective in the prediction of tri-modal microstructure in the isothermal local loading forming of TA15alloy.
基金Projects(51205317,51575449)supported by the National Natural Science Foundation of ChinaProject(50935007)supported by the National Natural Science Foundation of China for Key Program+1 种基金Project(3102015AX004)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(104-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing,China
文摘To study deformation banding inβworking of TA15titanium alloy,hot simulation compression experiments were carried out on a Gleeble3500thermal simulator,and the microstructure was investigated by optical microscopy(OM)and electron backscattered diffraction(EBSD).It is found that inβworking of TA15titanium alloy,deformation banding is still an important grain refinement mechanism up to temperature as high as0.7Tm(Tm is the melting temperature).Boundaries of deformation bands(DBBs)may be sharp or diffusive.Sharp DBBs retard discontinuous dynamic recrystallization(DDRX)by prohibiting nucleation,while the diffusive ones are sources of continuous dynamic recrystallization(CDRX).Deformation banding is more significant at high strain rate and large initial grain size.The average width of grain subdivisions is sensitive to strain rate but less affected by temperature and initial grain size.Multi-directional forging which produces crossing DDBs is potential to refine microstructure of small-size forgings.
基金Project(21501007)supported by the National Natural Science Foundation of ChinaProject(2016GY-226)supported by the Industrial Science and Technology Plan in Shaanxi Province of China+1 种基金Project(ZK15044)supported by the Doctoral Scientific Research Starting Foundation of Baoji University of Arts and Sciences,ChinaProject(201610721039)supported by Undergraduate Training Programs for Innovation and Entrepreneurship,China
文摘The KxNa1-xNbO3 nanopowders with cubic-like morphology and an average size of about 50 nm were synthesized by sol-gel auto-combustion method.And then,the ceramics were prepared and the phase transition,microstructure and electrical properties of the KxNa1-xNbO3 ceramics were investigated.Pure perovskite phases of the KxNa1-xNbO3 ceramics were confirmed by XRD patterns and the K0.50Na0.50NbO3 ceramics show the coexistence of orthorhombic and monoclinic structures.SEM micrographs show that all samples have bimodal grain size distributions and the number of the small grains decrease with increasing K+content in the bimodal grain size distribution system.The K0.50Na0.50NbO3 ceramics with the uniform grain size and the maximum density show excellent electrical properties withεr=467.40,tanδ=0.020,d33=128 pC/N and kp=0.32 at the room temperature,demonstrating that the properties of the K0.50Na0.50NbO3 powers prepared by sol-gel auto-combustion are excellent and the ceramics are promising lead-free piezoelectric materials.
文摘The morphology evolution and phase transformation of Al9(Mn,Ni)2 eutectic phase in an Al-4Ni-2Mn alloy during heat treatment at 600°C were studied by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).Results show that nearly all of the eutectic fibers change into prolate ellipsoid and spherical particles in the process of heat treatment,and Ostwald ripening phenomenon occurs in the eutectic region with the increase of the heat treatment time.Besides,a phase transformation from Al9(Mn,Ni)2 to O-phase is confirmed.The morphologies of the transformed particles indicate that the O-phase preferentially nucleates on the specific crystal plane of the Al9(Mn,Ni)2 eutectic phase and grows in a certain direction.During the phase transformation,the(010)[001]slip system in O-phase is activated,and the resultant slip traces appear on the surface of some O-phase particles.
文摘This vertically self‐pillared(VSP)structure extends the application range of traditional porous materials with facile mass/ion transport and enhanced reaction kinetics.Here,we prepare a single crystal metal‐organic framework(MOF),employing the ZIF‐67 structure as a proof of concept,which is constructed by vertically self‐pillared nanosheets(VSP‐MOF).We further converted VSP‐MOF into VSP‐cobalt sulfide(VSP‐CoS2)through a sulfidation process.Catalysis plays an important role in almost all battery technologies;for metallic batteries,lithium anodes exhibit a high theoretical specific capacity,low density,and low redox potential.However,during the half‐cell reaction(Li++e=Li),uncontrolled dendritic Li penetrates the separator and solid electrolyte interphase layer.When employed as a composite scaffold for lithium metal deposition,there are many advantage to using this framework:1)the VSP‐CoS2 substrate provides a high specific surface area to dissipate the ion flux and mass transfer and acts as a pre‐catalyst,2)the catalytic Co center favors the charge transfer process and preferentially binds the Li+with the enhanced electrical fields,and 3)the VSP structure guides the metallic propagation along the nanosheet 2D orientation without the protrusive dendrites.All these features enable the VSP structure in metallic batteries with encouraging performances.