充气式再入与降落技术(IRDT——Inflatable Reentry and Descent Technology)是近年来出现的一种新型的航天回收技术。它的结构简单、回收成本低,极大地改善了返回式飞行器的气动加热环境,同时降低了飞行器表面的热流密度。本文在现有...充气式再入与降落技术(IRDT——Inflatable Reentry and Descent Technology)是近年来出现的一种新型的航天回收技术。它的结构简单、回收成本低,极大地改善了返回式飞行器的气动加热环境,同时降低了飞行器表面的热流密度。本文在现有技术的基础上提出了一种可控方向的再入充气罩,研究表明将其应用于返回式飞行器的回收时,可在低密度大气层内将飞行器的速度降至较低水平(20m/s以内),从而降低了对防热材料的要求。另外,在没有附加动力装置的情况下可通过对充气罩气囊的充/放气来主动控制返回式飞行器的姿态,从而控制着陆点的方位。数值模拟结果表明该再入充气罩可为返回式飞行器提供足够的阻力和偏转力矩,从而起到减速和控制的作用。气动热分析结果表明:该再入充气罩在返回过程中的气动加热情况(最大热流密度为426kW/m2)远小于传统返回舱(最大热流密度为4826kW/m2),从而大幅度地降低了防热系统设计的复杂度。展开更多
文摘充气式再入与降落技术(IRDT——Inflatable Reentry and Descent Technology)是近年来出现的一种新型的航天回收技术。它的结构简单、回收成本低,极大地改善了返回式飞行器的气动加热环境,同时降低了飞行器表面的热流密度。本文在现有技术的基础上提出了一种可控方向的再入充气罩,研究表明将其应用于返回式飞行器的回收时,可在低密度大气层内将飞行器的速度降至较低水平(20m/s以内),从而降低了对防热材料的要求。另外,在没有附加动力装置的情况下可通过对充气罩气囊的充/放气来主动控制返回式飞行器的姿态,从而控制着陆点的方位。数值模拟结果表明该再入充气罩可为返回式飞行器提供足够的阻力和偏转力矩,从而起到减速和控制的作用。气动热分析结果表明:该再入充气罩在返回过程中的气动加热情况(最大热流密度为426kW/m2)远小于传统返回舱(最大热流密度为4826kW/m2),从而大幅度地降低了防热系统设计的复杂度。