期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
事件检测概率神经网络模型的建立与验证
1
作者
覃频频
《ITS通讯》
2006年第1期16-19,共4页
在对概率神经网络(PNN)的分类机理、输入向量选取和网络设置进行分析的基础上,建立了用于识别两类事件模式(无事件模式和有事件模式)的事件检测PNN模型。采用高速公路路段I.880实地线圈数据集和事件数据集验证模型,通过比较PNN...
在对概率神经网络(PNN)的分类机理、输入向量选取和网络设置进行分析的基础上,建立了用于识别两类事件模式(无事件模式和有事件模式)的事件检测PNN模型。采用高速公路路段I.880实地线圈数据集和事件数据集验证模型,通过比较PNN模型与多层前向神经网络(MLF)模型的结果,发现无论对于向北、向南或混合方向的高速公路事件检测,PNN模型的检测率(DR)比MLF模型高;平均检测时间(MTTD)比MLF模型短;但误报率(FAR)也较高。概率神经网络是高速公路事件检测的一种有效算法,其在理论基础、算法和学习速度等方面比多层前向神经网络具有优势。
展开更多
关键词
事件检测
概率神经网络
多层前向神经网络
下载PDF
职称材料
题名
事件检测概率神经网络模型的建立与验证
1
作者
覃频频
机构
西南文通大学交通运输学院
广西入学机械工程
学院
出处
《ITS通讯》
2006年第1期16-19,共4页
文摘
在对概率神经网络(PNN)的分类机理、输入向量选取和网络设置进行分析的基础上,建立了用于识别两类事件模式(无事件模式和有事件模式)的事件检测PNN模型。采用高速公路路段I.880实地线圈数据集和事件数据集验证模型,通过比较PNN模型与多层前向神经网络(MLF)模型的结果,发现无论对于向北、向南或混合方向的高速公路事件检测,PNN模型的检测率(DR)比MLF模型高;平均检测时间(MTTD)比MLF模型短;但误报率(FAR)也较高。概率神经网络是高速公路事件检测的一种有效算法,其在理论基础、算法和学习速度等方面比多层前向神经网络具有优势。
关键词
事件检测
概率神经网络
多层前向神经网络
Keywords
Incident Detection, PNN(probabilistic neural network), MLF(multi-layer feed-forward neural networks)
分类号
U491.3 [交通运输工程—交通运输规划与管理]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
事件检测概率神经网络模型的建立与验证
覃频频
《ITS通讯》
2006
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部