To improve the anti-noise performance of the time-domain Bregman iterative algorithm,an adaptive frequency-domain Bregman sparse-spike deconvolution algorithm is proposed.By solving the Bregman algorithm in the freque...To improve the anti-noise performance of the time-domain Bregman iterative algorithm,an adaptive frequency-domain Bregman sparse-spike deconvolution algorithm is proposed.By solving the Bregman algorithm in the frequency domain,the influence of Gaussian as well as outlier noise on the convergence of the algorithm is effectively avoided.In other words,the proposed algorithm avoids data noise effects by implementing the calculations in the frequency domain.Moreover,the computational efficiency is greatly improved compared with the conventional method.Generalized cross validation is introduced in the solving process to optimize the regularization parameter and thus the algorithm is equipped with strong self-adaptation.Different theoretical models are built and solved using the algorithms in both time and frequency domains.Finally,the proposed and the conventional methods are both used to process actual seismic data.The comparison of the results confirms the superiority of the proposed algorithm due to its noise resistance and self-adaptation capability.展开更多
The conventional poststack inversion uses standard recursion formulas to obtain impedance in a single trace.It cannot allow for lateral regularization.In this paper,ID edge-preserving smoothing(EPS)fi lter is extended...The conventional poststack inversion uses standard recursion formulas to obtain impedance in a single trace.It cannot allow for lateral regularization.In this paper,ID edge-preserving smoothing(EPS)fi lter is extended to 2D/3D for setting precondition of impedance model in impedance inversion.The EPS filter incorporates a priori knowledge into the seismic inversion.The a priori knowledge incorporated from EPS filter preconditioning relates to the blocky features of the impedance model,which makes the formation interfaces and geological edges precise and keeps the inversion procedure robust.Then,the proposed method is performed on two 2D models to show its feasibility and stability.Last,the proposed method is performed on a real 3D seismic work area from Southwest China to predict reef reservoirs in practice.展开更多
基金supported by the National Natural Science Foundation of China(No.NSFC 41204101)Open Projects Fund of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(No.PLN201733)+1 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2015051)Open Projects Fund of the Natural Gas and Geology Key Laboratory of Sichuan Province(No.2015trqdz03)
文摘To improve the anti-noise performance of the time-domain Bregman iterative algorithm,an adaptive frequency-domain Bregman sparse-spike deconvolution algorithm is proposed.By solving the Bregman algorithm in the frequency domain,the influence of Gaussian as well as outlier noise on the convergence of the algorithm is effectively avoided.In other words,the proposed algorithm avoids data noise effects by implementing the calculations in the frequency domain.Moreover,the computational efficiency is greatly improved compared with the conventional method.Generalized cross validation is introduced in the solving process to optimize the regularization parameter and thus the algorithm is equipped with strong self-adaptation.Different theoretical models are built and solved using the algorithms in both time and frequency domains.Finally,the proposed and the conventional methods are both used to process actual seismic data.The comparison of the results confirms the superiority of the proposed algorithm due to its noise resistance and self-adaptation capability.
基金The National Key S&T Special Projects (No. 2017ZX05008004-008)the National Natural Science Foundation of China (No. 41874146)+2 种基金the National Natural Science Foundation of China (No. 41704134)the Innovation Team of Youth Scientific and Technological in Southwest Petroleum University (No. 2017CXTD08)the Initiative Projects for Ph.Din China West Normal University (No. 19E063)
文摘The conventional poststack inversion uses standard recursion formulas to obtain impedance in a single trace.It cannot allow for lateral regularization.In this paper,ID edge-preserving smoothing(EPS)fi lter is extended to 2D/3D for setting precondition of impedance model in impedance inversion.The EPS filter incorporates a priori knowledge into the seismic inversion.The a priori knowledge incorporated from EPS filter preconditioning relates to the blocky features of the impedance model,which makes the formation interfaces and geological edges precise and keeps the inversion procedure robust.Then,the proposed method is performed on two 2D models to show its feasibility and stability.Last,the proposed method is performed on a real 3D seismic work area from Southwest China to predict reef reservoirs in practice.