Pore structure characteristics are important to oil and gas exploration in complex low-permeability reservoirs. Using multifractal theory and nuclear magnetic resonance (NMR), we studied the pore structure of low-pe...Pore structure characteristics are important to oil and gas exploration in complex low-permeability reservoirs. Using multifractal theory and nuclear magnetic resonance (NMR), we studied the pore structure of low-permeability sandstone rocks from the 4th Member (Es4) of the Shahejie Formation in the south slope of the Dongying Sag. We used the existing pore structure data from petrophysics, core slices, and mercury injection tests to classify the pore structure into three categories and five subcategories. Then, the T2 spectra of samples with different pore structures were interpolated, and the one- and three-dimensional fractal dimensions and the multifractal spectrum were obtained. Parameters a (intensity of singularity) andf(a) (density of distribution) were extracted from the multifractal spectra. The differences in the three fractal dimensions suggest that the pore structure types correlate with a andf(a). The results calculated based on the multifractal spectrum is consistent with that of the core slices and mercury injection. Finally, the proposed method was applied to an actual logging profile to evaluate the pore structure of low-permeability sandstone reservoirs.展开更多
To improve the anti-noise performance of the time-domain Bregman iterative algorithm,an adaptive frequency-domain Bregman sparse-spike deconvolution algorithm is proposed.By solving the Bregman algorithm in the freque...To improve the anti-noise performance of the time-domain Bregman iterative algorithm,an adaptive frequency-domain Bregman sparse-spike deconvolution algorithm is proposed.By solving the Bregman algorithm in the frequency domain,the influence of Gaussian as well as outlier noise on the convergence of the algorithm is effectively avoided.In other words,the proposed algorithm avoids data noise effects by implementing the calculations in the frequency domain.Moreover,the computational efficiency is greatly improved compared with the conventional method.Generalized cross validation is introduced in the solving process to optimize the regularization parameter and thus the algorithm is equipped with strong self-adaptation.Different theoretical models are built and solved using the algorithms in both time and frequency domains.Finally,the proposed and the conventional methods are both used to process actual seismic data.The comparison of the results confirms the superiority of the proposed algorithm due to its noise resistance and self-adaptation capability.展开更多
The conventional poststack inversion uses standard recursion formulas to obtain impedance in a single trace.It cannot allow for lateral regularization.In this paper,ID edge-preserving smoothing(EPS)fi lter is extended...The conventional poststack inversion uses standard recursion formulas to obtain impedance in a single trace.It cannot allow for lateral regularization.In this paper,ID edge-preserving smoothing(EPS)fi lter is extended to 2D/3D for setting precondition of impedance model in impedance inversion.The EPS filter incorporates a priori knowledge into the seismic inversion.The a priori knowledge incorporated from EPS filter preconditioning relates to the blocky features of the impedance model,which makes the formation interfaces and geological edges precise and keeps the inversion procedure robust.Then,the proposed method is performed on two 2D models to show its feasibility and stability.Last,the proposed method is performed on a real 3D seismic work area from Southwest China to predict reef reservoirs in practice.展开更多
Marchenko imaging obtains the subsurface reflectors using one-way Green’s functions,which are retrieved by solving the Marchenko equation.This method generates an image that is free of spurious artifacts due to inter...Marchenko imaging obtains the subsurface reflectors using one-way Green’s functions,which are retrieved by solving the Marchenko equation.This method generates an image that is free of spurious artifacts due to internal multiples.The Marchenko imaging method is a target-oriented technique;thus,it can image a user specified area.In the traditional Marchenko method,an accurate velocity model is critical for estimating direct waves from imaging points to the surface.An error in the velocity model results in the inaccurate estimation of direct waves.In turn,this leads to errors in computation of one-way Green’s functions,which then affects the final Marchenko images.To solve this problem,in this paper,we propose a self-adaptive traveltime updating technique based on the principle of equal traveltime to improve the Marchenko imaging method.The proposed method calculates the time shift of direct waves caused by the error in the velocity model,and corrects the wrong direct wave according to the time shift and reconstructs the correct Green’s functions.The proposed method improves the results of imaging using an inaccurate velocity model.By comparing the results from traditional Marchenko and the new method using synthetic data experiments,we demonstrated that the adaptive traveltime updating Marchenko imaging method could restore the image of geological structures to their true positions.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41202110)Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)(Grant No.PLN201612)+1 种基金the Applied Basic Research Projects in Sichuan Province(Grant No.2015JY0200)Open Fund Project from Sichuan Key Laboratory of Natural Gas Geology(Grant No.2015trqdz07)
文摘Pore structure characteristics are important to oil and gas exploration in complex low-permeability reservoirs. Using multifractal theory and nuclear magnetic resonance (NMR), we studied the pore structure of low-permeability sandstone rocks from the 4th Member (Es4) of the Shahejie Formation in the south slope of the Dongying Sag. We used the existing pore structure data from petrophysics, core slices, and mercury injection tests to classify the pore structure into three categories and five subcategories. Then, the T2 spectra of samples with different pore structures were interpolated, and the one- and three-dimensional fractal dimensions and the multifractal spectrum were obtained. Parameters a (intensity of singularity) andf(a) (density of distribution) were extracted from the multifractal spectra. The differences in the three fractal dimensions suggest that the pore structure types correlate with a andf(a). The results calculated based on the multifractal spectrum is consistent with that of the core slices and mercury injection. Finally, the proposed method was applied to an actual logging profile to evaluate the pore structure of low-permeability sandstone reservoirs.
基金supported by the National Natural Science Foundation of China(No.NSFC 41204101)Open Projects Fund of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(No.PLN201733)+1 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2015051)Open Projects Fund of the Natural Gas and Geology Key Laboratory of Sichuan Province(No.2015trqdz03)
文摘To improve the anti-noise performance of the time-domain Bregman iterative algorithm,an adaptive frequency-domain Bregman sparse-spike deconvolution algorithm is proposed.By solving the Bregman algorithm in the frequency domain,the influence of Gaussian as well as outlier noise on the convergence of the algorithm is effectively avoided.In other words,the proposed algorithm avoids data noise effects by implementing the calculations in the frequency domain.Moreover,the computational efficiency is greatly improved compared with the conventional method.Generalized cross validation is introduced in the solving process to optimize the regularization parameter and thus the algorithm is equipped with strong self-adaptation.Different theoretical models are built and solved using the algorithms in both time and frequency domains.Finally,the proposed and the conventional methods are both used to process actual seismic data.The comparison of the results confirms the superiority of the proposed algorithm due to its noise resistance and self-adaptation capability.
基金The National Key S&T Special Projects (No. 2017ZX05008004-008)the National Natural Science Foundation of China (No. 41874146)+2 种基金the National Natural Science Foundation of China (No. 41704134)the Innovation Team of Youth Scientific and Technological in Southwest Petroleum University (No. 2017CXTD08)the Initiative Projects for Ph.Din China West Normal University (No. 19E063)
文摘The conventional poststack inversion uses standard recursion formulas to obtain impedance in a single trace.It cannot allow for lateral regularization.In this paper,ID edge-preserving smoothing(EPS)fi lter is extended to 2D/3D for setting precondition of impedance model in impedance inversion.The EPS filter incorporates a priori knowledge into the seismic inversion.The a priori knowledge incorporated from EPS filter preconditioning relates to the blocky features of the impedance model,which makes the formation interfaces and geological edges precise and keeps the inversion procedure robust.Then,the proposed method is performed on two 2D models to show its feasibility and stability.Last,the proposed method is performed on a real 3D seismic work area from Southwest China to predict reef reservoirs in practice.
基金supported by the National Natural Science Foundation of China(No.41874167)the National Science and Technology Major Project of China(No.2017YFB0202904)the National Natural Science Foundation of China(No.41904130)。
文摘Marchenko imaging obtains the subsurface reflectors using one-way Green’s functions,which are retrieved by solving the Marchenko equation.This method generates an image that is free of spurious artifacts due to internal multiples.The Marchenko imaging method is a target-oriented technique;thus,it can image a user specified area.In the traditional Marchenko method,an accurate velocity model is critical for estimating direct waves from imaging points to the surface.An error in the velocity model results in the inaccurate estimation of direct waves.In turn,this leads to errors in computation of one-way Green’s functions,which then affects the final Marchenko images.To solve this problem,in this paper,we propose a self-adaptive traveltime updating technique based on the principle of equal traveltime to improve the Marchenko imaging method.The proposed method calculates the time shift of direct waves caused by the error in the velocity model,and corrects the wrong direct wave according to the time shift and reconstructs the correct Green’s functions.The proposed method improves the results of imaging using an inaccurate velocity model.By comparing the results from traditional Marchenko and the new method using synthetic data experiments,we demonstrated that the adaptive traveltime updating Marchenko imaging method could restore the image of geological structures to their true positions.