The microhardness curve trend and its relationships with microstructure and misorientation were analyzed to enhance the comprehension of the microstructure and mechanical property of micro-areas in Ti6 Al4 V laser-wel...The microhardness curve trend and its relationships with microstructure and misorientation were analyzed to enhance the comprehension of the microstructure and mechanical property of micro-areas in Ti6 Al4 V laser-welded joints with different welding speeds. The microhardness measured on the fusion line(H_m) is the highest from the weld center to the base metal. H_m increases with increasing weld width in a welded joint and increasing degree of the non-uniformity in all studied welded joints. The microhardness decreases from the weld metal to the base metal with decreasing amount of martensite α’ and increasing amount of original α phase. When the microstructure is mainly composed of martensite α’, the microhardness changes with the cooling rate, grain size of the martensite, and peak values of the fraction of misorientation angle of the martensite in a wide weld metal zone or weld center at different welding speeds, whereas the difference is small in a narrow weld metal zone.展开更多
The wetting of molten Sn-3.5Ag-0.5Cu alloy on the Ni-P(-SiC)coated SiCp/Al substrates was investigated by electroless Ni plating process,and the microstructures of the coating and the interfacial behavior of wetting s...The wetting of molten Sn-3.5Ag-0.5Cu alloy on the Ni-P(-SiC)coated SiCp/Al substrates was investigated by electroless Ni plating process,and the microstructures of the coating and the interfacial behavior of wetting systems were analyzed.The SiC particles are evenly distributed in the coating and enveloped with Ni.No reaction layer is observed at the coating/SiCp/Al composite interfaces.The contact angle increases from^19°with the Ni-P coating to 29°,43°and 113°with the corresponding Ni-P-3SiC,Ni-P-6SiC and Ni-P-9SiC coatings,respectively.An interaction layer containing Cu,Ni,Sn and P forms at the Sn-Ag-Cu/Ni-P-(0,3,6)SiC coated SiCp/Al interfaces,and the Cu-Ni-Sn and Ni-Sn-P phases are detected in the interaction layer.Moreover,the molten Sn-Ag-Cu can penetrate into the Ni-P(-SiC)coatings through the Ni-P/SiC interface and dissolve them to contact the SiCp/Al substrate.展开更多
The effects of yttrium(Y)and yttrium+calcium(Y+Ca)additions on the electrochemical properties and discharge performance of the as-extruded Mg−8Al−0.5Zn−0.2Mn(AZ80)anodes for Mg−air batteries were investigated.The resu...The effects of yttrium(Y)and yttrium+calcium(Y+Ca)additions on the electrochemical properties and discharge performance of the as-extruded Mg−8Al−0.5Zn−0.2Mn(AZ80)anodes for Mg−air batteries were investigated.The results show that the addition of 0.2 wt.%Y increased the corrosion resistance and discharge activity of AZ80 anode.This was attributed to the fine and sphericalβ-Mg_17)Al_(12) phases dispersing evenly in AZ80+0.2Y alloy,which suppressed the localized corrosion and severe“chunk effect”,and facilitated the rapid activation ofα-Mg.Combinative addition of 0.2 wt.%Y and 0.15 wt.%Ca generated grain refinement and a reduction of theβ-Mg_17)Al_(12) phase,resulting in a further enhancement in discharge voltage.However,the incorporation of Ca in Mg_17)Al_(12) and Al_(2)Y compounds compromised the corrosion resistance and anodic efficiency of AZ80+0.2Y+0.15Ca anode.Consequently,AZ80+0.2Y anode exhibited excellent overall discharge performance,with the peak discharge capacity and anodic efficiency of 1525 mA·h·g^(−1) and 67%at 80 mA/cm^(2),13%and 14%higher than those of AZ80 anode,respectively.展开更多
True stress?true strain curves of Incoloy028alloy at high temperature and strain rate were investigated by hot compression test.These curves show that the maximum flow stress decreases with the increase in temperature...True stress?true strain curves of Incoloy028alloy at high temperature and strain rate were investigated by hot compression test.These curves show that the maximum flow stress decreases with the increase in temperature and the decrease in strain rate.FEM simulation was employed to investigate the influence of temperature,extrusion speed and friction coefficient on the extrusion load,stress,strain and strain rate in the extrusion process.The increase of extrusion temperature results in decrease of load and deformation resistance,but has little influence on strain and strain rate.When extrusion speed changes between200and350mm/s,no obvious change about extrusion load can be found.Sharp peak value up to42500kN emerges in the extrusion load curve and the extrusion process becomes unstable seriously when extrusion speed rises up to400mm/s.Both stress and strain rate increase with the raise of extrusion speed.When friction coefficient is between0.02and0.03,deformation resistance is about160MPa and the strain rate can be limited below70s?1.Successful production of Incoloy028tube verifies the optimized parameters by FEM simulation analysis,and mechanical tests results of the products meet the required properties.展开更多
Ti5553-xFe (x=0.4, 1.2, 2.0, wt.%) alloys have been designed and fabricated through BE (blended element) sintering to investigate the effect of Fe-addition on athermal ω-phase transformation, α-phase evolution and a...Ti5553-xFe (x=0.4, 1.2, 2.0, wt.%) alloys have been designed and fabricated through BE (blended element) sintering to investigate the effect of Fe-addition on athermal ω-phase transformation, α-phase evolution and age hardening behavior. The results show that the formation of athermal ω-phase is fully suppressed in water-quenched specimens when Fe-addition is up to 2 wt.%. The relevant timescales of α formation during initial stages of aging indicate that incubation time increases with Fe-addition. Further aging results in continuous nucleation and growth of α-phase but finer intragranular α lamellae exhibit in Ti5553-2Fe alloy. In addition, the width and extent of grain boundary α-film increase slightly with incremental Fe-addition, especially in furnace cooling condition. Result of Vickers hardness manifests that Fe-addition leads to a strong hardening effect in both solution and aging treatment. The solid solution strengthening is quantitatively estimated by ab initio calculation based on the Labusch?Nabarro model. The evolution of α-precipitate is rationalized by Gibbs free energy. The prominent hardening effect of Ti5553?2Fe alloy is attributed to both large lattice misfit of β-matrix and fine α-precipitate distribution.展开更多
基金Project(51875442)supported by the National Natural Science Foundation of China。
文摘The microhardness curve trend and its relationships with microstructure and misorientation were analyzed to enhance the comprehension of the microstructure and mechanical property of micro-areas in Ti6 Al4 V laser-welded joints with different welding speeds. The microhardness measured on the fusion line(H_m) is the highest from the weld center to the base metal. H_m increases with increasing weld width in a welded joint and increasing degree of the non-uniformity in all studied welded joints. The microhardness decreases from the weld metal to the base metal with decreasing amount of martensite α’ and increasing amount of original α phase. When the microstructure is mainly composed of martensite α’, the microhardness changes with the cooling rate, grain size of the martensite, and peak values of the fraction of misorientation angle of the martensite in a wide weld metal zone or weld center at different welding speeds, whereas the difference is small in a narrow weld metal zone.
基金Projects(51572112,51401034)supported by the National Natural Science Foundation of ChinaProject(BK20151340)supported by the Natural Science Foundation of Jiangsu Province,China+3 种基金Projects(2014-XCL-002,TD-XCL-004)supported by the Six Talent Peaks Project of Jiangsu Province,ChinaProject(BRA2017387)supported by the 333 Talents Project of Jiangsu Province,ChinaProject([2015]26)supported by the Innovation/Entrepreneurship Program of Jiangsu Province,ChinaProject([2016]15)supported by the Qing Lan Project,China
文摘The wetting of molten Sn-3.5Ag-0.5Cu alloy on the Ni-P(-SiC)coated SiCp/Al substrates was investigated by electroless Ni plating process,and the microstructures of the coating and the interfacial behavior of wetting systems were analyzed.The SiC particles are evenly distributed in the coating and enveloped with Ni.No reaction layer is observed at the coating/SiCp/Al composite interfaces.The contact angle increases from^19°with the Ni-P coating to 29°,43°and 113°with the corresponding Ni-P-3SiC,Ni-P-6SiC and Ni-P-9SiC coatings,respectively.An interaction layer containing Cu,Ni,Sn and P forms at the Sn-Ag-Cu/Ni-P-(0,3,6)SiC coated SiCp/Al interfaces,and the Cu-Ni-Sn and Ni-Sn-P phases are detected in the interaction layer.Moreover,the molten Sn-Ag-Cu can penetrate into the Ni-P(-SiC)coatings through the Ni-P/SiC interface and dissolve them to contact the SiCp/Al substrate.
基金financial supports from the Key Development Project of Sichuan Province,China (No.2017GZ0399)the National Natural Science Foundation of China (No.52061040)the Open Projects of the Key Laboratory of Advanced Technologies of Materials,Ministry of Education,Southwest Jiaotong University,China (No.KLATM202003)。
文摘The effects of yttrium(Y)and yttrium+calcium(Y+Ca)additions on the electrochemical properties and discharge performance of the as-extruded Mg−8Al−0.5Zn−0.2Mn(AZ80)anodes for Mg−air batteries were investigated.The results show that the addition of 0.2 wt.%Y increased the corrosion resistance and discharge activity of AZ80 anode.This was attributed to the fine and sphericalβ-Mg_17)Al_(12) phases dispersing evenly in AZ80+0.2Y alloy,which suppressed the localized corrosion and severe“chunk effect”,and facilitated the rapid activation ofα-Mg.Combinative addition of 0.2 wt.%Y and 0.15 wt.%Ca generated grain refinement and a reduction of theβ-Mg_17)Al_(12) phase,resulting in a further enhancement in discharge voltage.However,the incorporation of Ca in Mg_17)Al_(12) and Al_(2)Y compounds compromised the corrosion resistance and anodic efficiency of AZ80+0.2Y+0.15Ca anode.Consequently,AZ80+0.2Y anode exhibited excellent overall discharge performance,with the peak discharge capacity and anodic efficiency of 1525 mA·h·g^(−1) and 67%at 80 mA/cm^(2),13%and 14%higher than those of AZ80 anode,respectively.
基金Project(50925417)supported by the National Science Fund for Distinguished Young Scholars of China
文摘True stress?true strain curves of Incoloy028alloy at high temperature and strain rate were investigated by hot compression test.These curves show that the maximum flow stress decreases with the increase in temperature and the decrease in strain rate.FEM simulation was employed to investigate the influence of temperature,extrusion speed and friction coefficient on the extrusion load,stress,strain and strain rate in the extrusion process.The increase of extrusion temperature results in decrease of load and deformation resistance,but has little influence on strain and strain rate.When extrusion speed changes between200and350mm/s,no obvious change about extrusion load can be found.Sharp peak value up to42500kN emerges in the extrusion load curve and the extrusion process becomes unstable seriously when extrusion speed rises up to400mm/s.Both stress and strain rate increase with the raise of extrusion speed.When friction coefficient is between0.02and0.03,deformation resistance is about160MPa and the strain rate can be limited below70s?1.Successful production of Incoloy028tube verifies the optimized parameters by FEM simulation analysis,and mechanical tests results of the products meet the required properties.
基金Projects(51671158,51871176,51621063)supported by the National Natural Science Foundation of ChinaProject(2014CB644003)supported by the National Basic Research Program of China+1 种基金Project(PB2018008)supported by the 111 Project 2.0,ChinaProject(2018JM5098)supported by the Natural Science Basic Research Plan in Shaanxi Province of China
文摘Ti5553-xFe (x=0.4, 1.2, 2.0, wt.%) alloys have been designed and fabricated through BE (blended element) sintering to investigate the effect of Fe-addition on athermal ω-phase transformation, α-phase evolution and age hardening behavior. The results show that the formation of athermal ω-phase is fully suppressed in water-quenched specimens when Fe-addition is up to 2 wt.%. The relevant timescales of α formation during initial stages of aging indicate that incubation time increases with Fe-addition. Further aging results in continuous nucleation and growth of α-phase but finer intragranular α lamellae exhibit in Ti5553-2Fe alloy. In addition, the width and extent of grain boundary α-film increase slightly with incremental Fe-addition, especially in furnace cooling condition. Result of Vickers hardness manifests that Fe-addition leads to a strong hardening effect in both solution and aging treatment. The solid solution strengthening is quantitatively estimated by ab initio calculation based on the Labusch?Nabarro model. The evolution of α-precipitate is rationalized by Gibbs free energy. The prominent hardening effect of Ti5553?2Fe alloy is attributed to both large lattice misfit of β-matrix and fine α-precipitate distribution.