Aluminum is widely used in transmission lines, and the accumulation of ice on aluminum conductor may inflict serious damage such as tower collapse and power failure. In this study, super-hydrophobic surface (SHS) on...Aluminum is widely used in transmission lines, and the accumulation of ice on aluminum conductor may inflict serious damage such as tower collapse and power failure. In this study, super-hydrophobic surface (SHS) on alurninurn conductor with rnicro-nanostructure was fabricated using the preferential etching principle of crystal defects. The surface rnicrostructure and wettability were investigated by scanning electron microscope and contact angle measurement, respectively. The icing progress was observed with a self-made icing experiment platform at different environment temperature. The results showed that, due to jumping and rolling down of coalesced droplets from SHS of aluminum conductor at low temperature, the formation of icing on SHS could be delayed. Dynamic icing experiment indicated that SHS on aluminum conductor could restrain the formation of icing in certain temperature range, but could not exert influence on the accumulation of icing. This study offers new insight into understanding the anti-icing performance of actual aluminum conductor.展开更多
基金supported by the National Natural Science Foundation of China (No.51272208)
文摘Aluminum is widely used in transmission lines, and the accumulation of ice on aluminum conductor may inflict serious damage such as tower collapse and power failure. In this study, super-hydrophobic surface (SHS) on alurninurn conductor with rnicro-nanostructure was fabricated using the preferential etching principle of crystal defects. The surface rnicrostructure and wettability were investigated by scanning electron microscope and contact angle measurement, respectively. The icing progress was observed with a self-made icing experiment platform at different environment temperature. The results showed that, due to jumping and rolling down of coalesced droplets from SHS of aluminum conductor at low temperature, the formation of icing on SHS could be delayed. Dynamic icing experiment indicated that SHS on aluminum conductor could restrain the formation of icing in certain temperature range, but could not exert influence on the accumulation of icing. This study offers new insight into understanding the anti-icing performance of actual aluminum conductor.