期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
CVD法制备Inconel 718高温合金表面铝化物涂层高温氧化行为研究
1
作者 孟国辉 齐浩雄 +6 位作者 杜撰 刘梅军 杨冠军 吴勇 孙清云 夏思瑶 董雪 《材料研究与应用》 CAS 2024年第2期187-194,共8页
Inconel 718高温合金是燃气轮机和航空发动机热端部件的关键核心材料,其表面通常制备有铝化物涂层,起到提高抗氧化和热腐蚀性能的作用。理解铝化物涂层的高温氧化行为,是提高部件抗高温氧化能力的关键。采用化学气相沉积(CVD)技术,在Inc... Inconel 718高温合金是燃气轮机和航空发动机热端部件的关键核心材料,其表面通常制备有铝化物涂层,起到提高抗氧化和热腐蚀性能的作用。理解铝化物涂层的高温氧化行为,是提高部件抗高温氧化能力的关键。采用化学气相沉积(CVD)技术,在Inconel 718高温合金表面制备了铝化物涂层,在大气环境、950℃条件下开展了恒温氧化测试,采用扫描电子显微镜、X射线衍射和X射线能谱等手段,研究了其高温氧化行为,并与Inconel 718高温合金进行对比。结果表明:Inconel 718高温合金表面制备的CVD铝化物涂层,其表面粗糙,具有双层结构。外层为富含Ni和Al元素的β-NiAl层,平均厚度为14.1μm,内层为富含Fe和Cr元素的σ相与富含Nb、Mo和Fe元素的Laves相共存的互扩散层,平均厚度为5.9μm。恒温氧化后,Inconel 718高温合金表面氧化生成了Cr_(2)O_(3)膜,而CVD铝化物涂层表面氧化生成了α-Al_(2)O_(3)膜。Cr_(2)O_(3)膜和α-Al_(2)O_(3)膜的生长都遵循抛物线型生长规律,Cr_(2)O_(3)膜的生长速率常数为0.86μm·h^(-1/2),α-Al_(2)O_(3)膜的生长速率常数为0.15μm·h^(-1/2)。此外,观察发现Inconel 718高温合金发生了内氧化,而CVD铝化物涂层未出现内氧化,两者氧化行为差异的原因在于CVD铝化物涂层中的β-NiAl相,其氧化生成均匀、连续、致密的α-Al_(2)O_(3)膜,阻止了内部金属发生进一步氧化。本研究揭示了Inconel 718高温合金和CVD铝化物涂层的抗高温氧化作用机理,为Inconel 718高温合金用高抗氧化性CVD铝化物涂层的制备及应用提供了技术支撑。 展开更多
关键词 Inconel 718高温合金 燃气轮机 航空发动机 化学气相沉积 铝化物涂层 高温氧化行为 α-Al_(2)O_(3) Β-NIAL
下载PDF
Inconel 718高温合金表面铝化物涂层的制备及其形成机制
2
作者 孟国辉 齐浩雄 +6 位作者 杜撰 刘梅军 杨冠军 吴勇 孙清云 夏思瑶 董雪 《材料研究与应用》 CAS 2024年第1期133-139,共7页
Inconel 718高温合金表面制备的铝化物涂层的组织结构及其形成机理,是提高该高温合金抗高温氧化和耐腐蚀性能的关键。采用化学气相沉积法在高温合金Inconel 718表面制备了铝化物涂层,通过结合使用材料热力学模拟软件JMatPro、X射线衍射... Inconel 718高温合金表面制备的铝化物涂层的组织结构及其形成机理,是提高该高温合金抗高温氧化和耐腐蚀性能的关键。采用化学气相沉积法在高温合金Inconel 718表面制备了铝化物涂层,通过结合使用材料热力学模拟软件JMatPro、X射线衍射仪、X射线能谱仪和扫描电子显微镜等表征手段,详细研究了铝化物涂层的微观组织结构。研究结果表明:在1 050℃温度条件下,经过1.5 h反应,Inconel 718表面生成了双层结构的铝化物涂层,其外层厚度为14.1μm,主要由β-NiAl相组成,内层厚度为5.9μm,由σ相和Laves相组成;外层的β-NiAl相形成是由Inconel 718高温合金中的Ni元素外扩散至表面后,与环境中的卤化铝反应而生成的;大量的Ni元素外扩散导致高温合金中的γ-Ni相减少,当高温合金中Ni元素的含量(原子分数)减少至49%时γ-Ni相中开始析出Laves相,当Ni元素的含量减少至40%时σ相也开始析出,当Ni元素的含量最终降至9%时Inconel 718高温合金完全转变成由σ相和Laves相组成的铝化物内层。研究结果深入揭示了涂层形成的机理,为优化铝化物涂层制备工艺提供了重要的理论基础。同时,对于Inconel718高温合金的高温稳定性和腐蚀性能的提升具有实际应用价值。 展开更多
关键词 高温合金 铝化物涂层 微观结构 扩散 化学气相沉积 Inconel 718 组织结构 形成机理
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部