-
题名双分支网络架构下的图像相似度学习
被引量:1
- 1
-
-
作者
卢健
马成贤
周嫣然
李哲
-
机构
西安工程大学电子信息学报
-
出处
《测绘通报》
CSCD
北大核心
2019年第12期50-55,共6页
-
基金
国家自然科学基金(51607133)
陕西省教育厅专项科学研究计划(17JK0332)
+1 种基金
陕西省科技厅科技发展计划(2011K06-01)
西安市碑林区应用技术研发项目(GX1807)
-
文摘
图像相似度学习是指通过网络学习图像内容信息来预测两张图像是否匹配。迄今为止,基于卷积神经网络改进的变体网络有效提升了学习效率,但由于提取特征比较单一无法准确描述图像特征,导致相似度学习效率较低。为此,本文提出一种基于卷积神经网络结构的双分支网络。该网络为左右分支网络结构相同,但权值不共享,网络输入为双分支输入。首先由左右分支网络分别提取单通道图像特征;然后通过特征融合层进行特征融合;最后将融合特征直接输入全连接层进行相似度学习,既改善了提取的图像特征多样性,又加快了模型训练速度。在实验室工业相机拍摄的芯片卡槽图像数据集上进行对比试验,结果表明,相比其他模型,本文提出的模型具有较强的网络学习能力和模型泛化能力,准确率高达97.96%。
-
关键词
图像相似度学习
卷积神经网络
双分支网络
权值不共享
特征融合
-
Keywords
image similarity learning
convolutional neural network
two-branch network
weight not shared
feature fusion
-
分类号
P234
[天文地球—摄影测量与遥感]
-