期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于YOLOv5的换向器表面缺陷检测算法研究
1
作者 张晓丽 马怡琛 +3 位作者 仓玉萍 董少飞 郝纳 何思思 《重型机械》 2023年第6期21-27,共7页
在零部件制造和使用过程中,可能会在零部件表面出现缺损现象,而零部件在反复使用过程中其微小缺陷可能扩大甚至使损坏零部件,进而导致零部件所在系统发生故障。以工业用典型零部件换向器为研究对象,提出了基于深度学习算法的零部件缺陷... 在零部件制造和使用过程中,可能会在零部件表面出现缺损现象,而零部件在反复使用过程中其微小缺陷可能扩大甚至使损坏零部件,进而导致零部件所在系统发生故障。以工业用典型零部件换向器为研究对象,提出了基于深度学习算法的零部件缺陷检测方法。研究中,基于KolektorSDD数据集,首先采用Mosaic数据增强方法对换向器缺陷数据集中的数据进行旋转、裁剪等处理,对数据集进行扩充,构建数据集。其次,将构建的数据集划分为训练集和测试集。采用构建的训练数据集,搭建深度学习框架并采用YOLOv5卷积神经网络训练模型,建立换向器表面缺陷识别模型。最后,采用构建的识别模型对测试集中的数据进行测试。结果表明,训练模型性能评价指标平均精确率均值(mAP)及正样本召回率(Recall)均高达95%以上,采用深度学习中YOLOv5目标检测算法对换向器表面缺陷的检测精度可高达90%。 展开更多
关键词 换向器表面缺陷 深度学习 卷积神经网络 YOLOv5算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部