The oxidative cyclization reaction of 2-nitroaniline via sodium hypochlorite to yield benzo- furoxan is investigated by the hybrid density functional theory B3LYP/6-31G(d,p) method. Solvent effects are estimated wit...The oxidative cyclization reaction of 2-nitroaniline via sodium hypochlorite to yield benzo- furoxan is investigated by the hybrid density functional theory B3LYP/6-31G(d,p) method. Solvent effects are estimated with the polarizable continuum model to optimize structures. The title reaction is predicted to undergo two pathways, each of which is a stepwise process. Path A includes four steps, namely oxidization, H-attack, hydrolysis, and cyclization. Path B involves the nucleophilic attack of OH^- to the H atom of the N-H bond and the proton transfer to the N atom of amino group leading to the cleavage of the N-H single bond in the amino group. The calculated results indicate that path A is favored mechanism for the title reaction. Furthermore, it is rational for one water molecule serving as a bridge to assist in the hydrolysis step of Path A and our calculations exhibit that this process is the rate-determining step.展开更多
文摘The oxidative cyclization reaction of 2-nitroaniline via sodium hypochlorite to yield benzo- furoxan is investigated by the hybrid density functional theory B3LYP/6-31G(d,p) method. Solvent effects are estimated with the polarizable continuum model to optimize structures. The title reaction is predicted to undergo two pathways, each of which is a stepwise process. Path A includes four steps, namely oxidization, H-attack, hydrolysis, and cyclization. Path B involves the nucleophilic attack of OH^- to the H atom of the N-H bond and the proton transfer to the N atom of amino group leading to the cleavage of the N-H single bond in the amino group. The calculated results indicate that path A is favored mechanism for the title reaction. Furthermore, it is rational for one water molecule serving as a bridge to assist in the hydrolysis step of Path A and our calculations exhibit that this process is the rate-determining step.