基于全耗尽SOI CMOS工艺,建立了具有Si Ge沟道的SOI MOS器件结构模型,并利用ISE TCAD器件模拟软件,对Si Ge SOI CMOS的电学特性进行模拟分析。结果表明,引入Si Ge沟道可极大地提高PMOS的驱动电流和跨导(当Ge组分为0.3时,驱动电流提高39....基于全耗尽SOI CMOS工艺,建立了具有Si Ge沟道的SOI MOS器件结构模型,并利用ISE TCAD器件模拟软件,对Si Ge SOI CMOS的电学特性进行模拟分析。结果表明,引入Si Ge沟道可极大地提高PMOS的驱动电流和跨导(当Ge组分为0.3时,驱动电流提高39.3%,跨导提高38.4%),CMOS电路的速度显著提高;在一定的Ge总量下,改变Ge的分布,当沟道区呈正向递减式分布时,电路速度最快。展开更多
通过商用半导体模拟器MEDICI对700 V 4H-SiC晶闸管开通特性进行了模拟研究。模拟结果表明阳极电压小于100 V时,开通过程符合扩散模型,电压更高时,开通时间随阳极电压升高而迅速下降,符合场开通机制。不同于Si及GaAs晶闸管,SiC晶闸管p型...通过商用半导体模拟器MEDICI对700 V 4H-SiC晶闸管开通特性进行了模拟研究。模拟结果表明阳极电压小于100 V时,开通过程符合扩散模型,电压更高时,开通时间随阳极电压升高而迅速下降,符合场开通机制。不同于Si及GaAs晶闸管,SiC晶闸管p型耐压层中浅能级杂质Al使得其开通时间随温度的升高而降低。较厚的基区使得电导调制效应只发生在发射区与基区边界一个范围之内,随着温度的升高,其余部分的载流子数目指数增加,压降指数减小。开通时间随着门极触发电流的加大而逐渐缩短,减小到一定程度时,减小速度明显变缓。展开更多
文摘基于全耗尽SOI CMOS工艺,建立了具有Si Ge沟道的SOI MOS器件结构模型,并利用ISE TCAD器件模拟软件,对Si Ge SOI CMOS的电学特性进行模拟分析。结果表明,引入Si Ge沟道可极大地提高PMOS的驱动电流和跨导(当Ge组分为0.3时,驱动电流提高39.3%,跨导提高38.4%),CMOS电路的速度显著提高;在一定的Ge总量下,改变Ge的分布,当沟道区呈正向递减式分布时,电路速度最快。
文摘通过商用半导体模拟器MEDICI对700 V 4H-SiC晶闸管开通特性进行了模拟研究。模拟结果表明阳极电压小于100 V时,开通过程符合扩散模型,电压更高时,开通时间随阳极电压升高而迅速下降,符合场开通机制。不同于Si及GaAs晶闸管,SiC晶闸管p型耐压层中浅能级杂质Al使得其开通时间随温度的升高而降低。较厚的基区使得电导调制效应只发生在发射区与基区边界一个范围之内,随着温度的升高,其余部分的载流子数目指数增加,压降指数减小。开通时间随着门极触发电流的加大而逐渐缩短,减小到一定程度时,减小速度明显变缓。
基金Project Supported by the Open Fund of Key Laboratory of Wide Bandgap Semiconductors Material and Devices,Ministry of Education,ChinaThe Research Fund for Excellent Doctor Degree Thesis of Xi'an University of Technology