针对基于训练序列的智能天线自适应干扰抑制系统,提出了一种最小二乘(Least squares,LS)-最小均方(Least mean squares,LMS)智能天线自适应干扰抑制方法,该方法首先利用小快拍数LS方法为LMS方法提供初始加权矢量,然后用LMS算法更新加权...针对基于训练序列的智能天线自适应干扰抑制系统,提出了一种最小二乘(Least squares,LS)-最小均方(Least mean squares,LMS)智能天线自适应干扰抑制方法,该方法首先利用小快拍数LS方法为LMS方法提供初始加权矢量,然后用LMS算法更新加权矢量。对LS、LMS和LS-LMS三种算法复杂度分析比较得知新方法的计算量较小,在快拍数较大或阵元与快拍数均较大时都能有效地提高计算效率。仿真实验表明,新方法性能优于LMS算法,具有较快的收敛速度,且收敛速度与干扰环境无关。展开更多
基因选择通常是在基因空间中进行的.由于基因空间的维数(基因数目)比该空间中的样本数要多得多,这种做法存在严重的维数发难(curse of dimensionality)问题,其结果是在基因空间中所建立数据模型难于获得满意的精度,基于所建立模型的基...基因选择通常是在基因空间中进行的.由于基因空间的维数(基因数目)比该空间中的样本数要多得多,这种做法存在严重的维数发难(curse of dimensionality)问题,其结果是在基因空间中所建立数据模型难于获得满意的精度,基于所建立模型的基因选择结果可信度低.如何对具有极少样本的极高维空间进行特征选择(基因选择)是一个极具挑战性的课题.将基因空间变换为它的对偶空间,称为类别空间,从而空间的维数仅为基因空间中样本的类别数,空间中的样本数则为基因空间的维数.显然,在类别空间中不存在任何维数发难现象;提出了在类别空间中基于将不同的类尽可能分开的原则、并借助主分量分析的基于类别空间基因选择方法.对真实基因数据的基因选择实验,并通过Fisher指标、加权Fisher指标以及leave-one-out cross validation等可分性指标,与其他两种基因选择方法进行了深入的比较,结果表明该方法是十分有效的.展开更多
文摘针对基于训练序列的智能天线自适应干扰抑制系统,提出了一种最小二乘(Least squares,LS)-最小均方(Least mean squares,LMS)智能天线自适应干扰抑制方法,该方法首先利用小快拍数LS方法为LMS方法提供初始加权矢量,然后用LMS算法更新加权矢量。对LS、LMS和LS-LMS三种算法复杂度分析比较得知新方法的计算量较小,在快拍数较大或阵元与快拍数均较大时都能有效地提高计算效率。仿真实验表明,新方法性能优于LMS算法,具有较快的收敛速度,且收敛速度与干扰环境无关。
文摘基因选择通常是在基因空间中进行的.由于基因空间的维数(基因数目)比该空间中的样本数要多得多,这种做法存在严重的维数发难(curse of dimensionality)问题,其结果是在基因空间中所建立数据模型难于获得满意的精度,基于所建立模型的基因选择结果可信度低.如何对具有极少样本的极高维空间进行特征选择(基因选择)是一个极具挑战性的课题.将基因空间变换为它的对偶空间,称为类别空间,从而空间的维数仅为基因空间中样本的类别数,空间中的样本数则为基因空间的维数.显然,在类别空间中不存在任何维数发难现象;提出了在类别空间中基于将不同的类尽可能分开的原则、并借助主分量分析的基于类别空间基因选择方法.对真实基因数据的基因选择实验,并通过Fisher指标、加权Fisher指标以及leave-one-out cross validation等可分性指标,与其他两种基因选择方法进行了深入的比较,结果表明该方法是十分有效的.