期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
La and CrCo-doped SrTiO_3 as an H_2 evolution photocatalyst for construction of a Z-scheme overall water splitting system 被引量:7
1
作者 Yushuai Jia Dan Zhao +2 位作者 Mingrun Li Hongxian Han Can Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第3期421-430,共10页
The photocatalytic activity of a semiconductor‐based photocatalyst largely depends on the semiconductor’s intrinsic crystal and electronic properties.We have prepared two types of La and Cr co‐doped SrTiO3photocata... The photocatalytic activity of a semiconductor‐based photocatalyst largely depends on the semiconductor’s intrinsic crystal and electronic properties.We have prepared two types of La and Cr co‐doped SrTiO3photocatalysts(SrTiO3(La,Cr))using the polymerized complex method(PCM)and sol‐gel hydrothermal method(SHM).Under?>420‐nm visible light irradiation,only the Pt‐loaded SrTiO3(La,Cr)prepared by the SHM showed efficient photocatalytic activities for both H2evolution in the presence of an I?sacrificial reagent and for Z‐scheme overall water splitting when it was coupled with the Pt‐loaded WO3in the presence of I?and IO3?as the shuttle redox mediator.The superior photocatalytic activity of SrTiO3(La,Cr)prepared by the SHM has been ascribed to its more negative conduction‐band position,higher carrier concentration,and higher carrier mobility,demonstrating that the design and synthesis of an H2‐evolution photocatalyst with appropriate electronic properties is crucial for achieving Z‐scheme overall water splitting. 展开更多
关键词 Strontium titanate PHOTOCATALYSIS Water splitting Z‐scheme Hydrogen evolution
下载PDF
O-O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts 被引量:4
2
作者 Xue-Peng Zhang Hong-Yan Wang +2 位作者 Haoquan Zheng Wei Zhang Rui Cao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第8期1253-1268,共16页
Water oxidation is one of the most important reactions in natural and artificial energy conversion schemes.In nature,solar energy is converted to chemical energy via water oxidation at the oxygen-evolving center of ph... Water oxidation is one of the most important reactions in natural and artificial energy conversion schemes.In nature,solar energy is converted to chemical energy via water oxidation at the oxygen-evolving center of photosystem II to generate dioxygen,protons,and electrons.In artificial energy schemes,water oxidation is one of the half reactions of water splitting,which is an appealing strategy for energy conversion via photocatalytic,electrocatalytic,or photoelectrocatalytic processes.Because it is thermodynamically unfavorable and kinetically slow,water oxidation is the bottleneck for achieving large-scale water splitting.Thus,developing highly efficient water oxidation catalysts has attracted the interests of researchers in the past decades.The formation of O-O bonds is typically the rate-determining step of the water oxidation catalytic cycle.Therefore,better understanding this key step is critical for the rational design of more efficient catalysts.This review focuses on elucidating the evolution of metal-oxygen species during transition metal-catalyzed water oxidation,and more importantly,on discussing the feasible O-O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts. 展开更多
关键词 Oxygen evolution reaction Water oxidation O-O bond formation Transition metal complex Molecular electrocatalysis Reaction mechanism
下载PDF
An unusual network of α-MnO_(2) nanowires with structure-induced hydrophilicity and conductivity for improved electrocatalysis 被引量:4
3
作者 Yingdong Chen Shujiao Yang +2 位作者 Hongfei Liu Wei Zhang Rui Cao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第10期1724-1731,共8页
Nanowires with anisotropic morphologies have been applied in various scientific and technological areas.It is also widely employed to fabricate nanowires into high-dimensional superstructures(arrays,networks etc.)to o... Nanowires with anisotropic morphologies have been applied in various scientific and technological areas.It is also widely employed to fabricate nanowires into high-dimensional superstructures(arrays,networks etc.)to overcome the shortcomings of low-dimensional nanowires.However,typical strategies for constructing these superstructures are restricted to complicated and harsh synthetic conditions,not to mention unique 3D structures with advanced properties beyond common superstructures.Herein,we report an unusual network ofα-MnO_(2)nanowires with structure-induced hydrophilicity and conductivity.In the network,the nanowires are interconnected from all directions by nodes,and the 3D network structure is formed from the endless connection of nodes in a node-by-node way.The unique network structure brings about high hydrophilicity and conductivity,both of which are positive factors for an efficient electrocatalyst.Accordingly,the α-MnO_(2) network was tested for electrocatalytic water oxidation and showed significantly enhanced activity compared with isolatedα-MnO_(2)nanowires and 3Dα-MnO_(2)microspheres.This study not only provides a synthetic route toward an advanced network structure but also a new idea for the design of materials for electrochemistry with both efficient mass diffusion and charge transfer. 展开更多
关键词 ELECTROCATALYSIS Water oxidation Oxygen evolution reaction MnO_(2)network HYDROPHILICITY CONDUCTIVITY
下载PDF
Direct growth of holey Fe3O4-coupled Ni(OH)2 sheets on nickel foam for the oxygen evolution reaction 被引量:4
4
作者 Yu Ding Bo-Qiang Miao +4 位作者 Yue Zhao Fu-Min Li Yu-Cheng Jiang Shu-Ni Li Yu Chen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第2期271-278,共8页
The oxygen evolution reaction(OER)is a half-reaction of water electrolysis,and the OER performance of an electrocatalyst is significantly related to its energy conversion efficiency.Due to their high OER activity,tran... The oxygen evolution reaction(OER)is a half-reaction of water electrolysis,and the OER performance of an electrocatalyst is significantly related to its energy conversion efficiency.Due to their high OER activity,transition metal-based nanomaterials have become potential low-cost substitutes for Ir/Ru-based OER electrocatalysts in an alkaline environment.Herein,holey Fe3O4-coupled Ni(OH)2 sheets(Ni(OH)2-Fe H-STs)were easily achieved by a simple mixed-cyanogel hydrolysis strategy.The two-dimensional(2D)Ni(OH)2-Fe H-STs with ca.1 nm thickness have a high specific surface area,abundant unsaturated coordination atoms,and numerous pores,which are highly favorable for electrocatalytic reactions.Meanwhile,the introduction of Fe improves the conductivity and regulates the electronic structure of Ni.Due to their special structural features and synergistic effect between the Fe and Ni atoms,Ni(OH)2-Fe H-STs with an optimal Ni/Fe ratio show excellent OER activity in a 1 M KOH solution,which significantly exceeds that of the commercial RuO2 nanoparticle electrocatalyst.Furthermore,Ni(OH)2-Fe H-STs can be grown on nickel foam(NF),and the resulting material exhibits enhanced OER activity,such as a small overpotential of 200 mV and a small Tafel slope of 56 mV dec−1,than that of Ni(OH)2-Fe H-STs without NF. 展开更多
关键词 Oxygen evolution reaction Transition metal-based nanomaterials Holey two-dimensional materials Heteroatom doping ELECTROCATALYSIS
下载PDF
Preparation of BiOCl0.9I0.1/β-Bi2O3 composite for degradation of tetracycline hydrochloride under simulated sunlight 被引量:6
5
作者 Xiong Ma Kaiyi Chen +5 位作者 Bin Niu Yan Li Lei Wang Jingwei Huang Houde She Qizhao Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第10期1535-1543,共9页
A novel and effective BiOCl0.9I0.1/x%β-Bi2O3 composite catalyst was synthesized through a precipitation method. The structure, morphology, and optical properties of the samples were certified by X-ray diffraction, UV... A novel and effective BiOCl0.9I0.1/x%β-Bi2O3 composite catalyst was synthesized through a precipitation method. The structure, morphology, and optical properties of the samples were certified by X-ray diffraction, UV-Vis diffuse reflectance, scanning electron microscopy, and X-ray photoelectron spectroscopic characterizations. Photocatalytic experiments demonstrated that the synthesized BiOCl0.9I0.1/x%β-Bi2O3 composite catalyst exhibited excellent photocatalytic performance toward the degradation of tetracycline hydrochloride(TCH) under simulated sunlight. Furthermore, the TCH degradation rate of BiOCl0.9I0.1/15%β-Bi2O3 increased by 27.6% and 61.4% compared with those of the pure BiOCl0.9I0.1 and pure β-Bi2O3, respectively. Due to the multiple vacancies and valence states possessed by BiOCl0.9I0.1/x%β-Bi2O3, namely Bi5+, Bi(3-x)+, Bi5+–O, Bi3+–O, I- and I3-, the charge separation in photocatalysis reactions can be effectively promoted. The Mott-Schottky measurements indicate that the conduction band(CB) level of BiOCl0.9I0.1/15%β-Bi2O3 becomes more negative relative to that of BiOCl0.9I0.1, guaranteeing an advantageous effect on the redox ability of the photocatalyst. This study provides a new bright spot for the construction of high-performance photocatalysts. 展开更多
关键词 BiOCl0.9I0.1/β-Bi2O3 DEGRADATION Tetracycline hydrochloride PHOTOCATALYSIS Simulated sunlight
下载PDF
Fabrication of TiO_2(B)/anatase heterophase junctions in nanowires via a surface-preferred phase transformation process for enhanced photocatalytic activity 被引量:4
6
作者 Yilan Wang Wan Zhang +4 位作者 Zihao Wang Yimeng Cao Jiami Feng Zenglin Wang Yi Ma 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第9期1500-1510,共11页
Heterojunction fabrication is one of the most effective strategies for enhancing the photocatalytic performance of semiconductor photocatalysts. Here, TiO2(B)/anatase nanowires with interfacial heterostructures were... Heterojunction fabrication is one of the most effective strategies for enhancing the photocatalytic performance of semiconductor photocatalysts. Here, TiO2(B)/anatase nanowires with interfacial heterostructures were prepared through a three-step synthesis method, including hydrothermal treatment, H+ exchange, and annealing. The phase structures of the nanowires in the bulk and on the surface during the annealing process were monitored by XRD and UV-Raman spectroscopy, respectively. SEM and TEM results indicate that the TiO2(B) nanowires partially collapse and transform into anatase during the annealing process and the heterophase junction structure is formed simultaneously. On the basis of the phase structure together with morphology data, a phase-transformation mechanism was proposed. Photocatalytic activity was evaluated by hydrogen production and pollutant-degradation assays. The optimized structure of the photocatalyst contains 24% TiO2(B) in the bulk and 100% anatase on the surface. The charge-carrier behavior during the photocatalytic process was investigated by photocurrent, electrochemical impedance spectroscopy(EIS), and photoluminescence(PL) spectroscopy, which revealed that the heterophase-junction structure in the bulk was responsible for the highly efficient charge separation and transportation, etc.; the anatase on the surface took control of the high surface-reaction activity. 展开更多
关键词 TiO2(B)/anatase Heterophase junction Surface‐preferred Photocatalysis PHASETRANSFORMATION
下载PDF
Tailoring the surface structures of iron oxide nanorods to support Au nanoparticles for CO oxidation 被引量:4
7
作者 Wen Shi Tongtong Gao +3 位作者 Liyun Zhang Yanshuang Ma Zhongwen Liu Bingsen Zhang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第12期1884-1894,共11页
Iron oxide supported Au nanomaterials are one of the most studied catalysts for low-temperature CO oxidation.Catalytic performance not only critically depends on the size of the supported Au nanoparticles(NPs)but also... Iron oxide supported Au nanomaterials are one of the most studied catalysts for low-temperature CO oxidation.Catalytic performance not only critically depends on the size of the supported Au nanoparticles(NPs)but also strongly on the chemical nature of the iron oxide.In this study,Au NPs supported on iron oxide nanorods with different surface properties throughβ-FeOOH annealing,at varying temperatures,were synthesized,and applied in the CO oxidation.Detailed characterizations of the interactions between Au NPs and iron oxides were obtained by X-ray diffraction,transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy.The results indicate that the surface hydroxyl group on the Au/FeOOH catalyst,before calcination(Au/FeOOH-fresh),could facilitate the oxygen adsorption and dissociation on positively charged Au,thereby contributing to the low-temperature CO oxidation reactivity.After calcination at 200℃,under air exposure,the chemical state of the supported Au NP on varied iron oxides partly changed from metal cation to Au0,along with the disappearance of the surface OH species.Au/FeOOH with the highest Au0 content exhibits the highest activity in CO oxidation,among the as-synthesized catalysts.Furthermore,good durability in CO oxidation was achieved over the Au/FeOOH catalyst for 12 h without observable deactivation.In addition,the advanced identical-location TEM method was applied to the gas phase reaction to probe the structure evolution of the Au/iron oxide series of the catalysts and support structure.A Au NP size-dependent Ostwald ripening process mediated by the transport of Au(CO)x mobile species under certain reaction conditions is proposed,which offers a new insight into the validity of the structure-performance relationship. 展开更多
关键词 Iron oxide nanorods Surface property Au nanoparticle CO oxidation Structure evolution
下载PDF
Mononuclear first-row transition-metal complexes as molecular catalysts for water oxidation 被引量:3
8
作者 Ni Wang Haoquan Zheng +1 位作者 Wei Zhang Rui Cao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第2期228-244,共17页
Water oxidation is significant in both natural and artificial photosynthesis.In nature,water oxidation occurs at the oxygen‐evolving center of photosystem II,and leads to the generation of oxygen,protons,and electron... Water oxidation is significant in both natural and artificial photosynthesis.In nature,water oxidation occurs at the oxygen‐evolving center of photosystem II,and leads to the generation of oxygen,protons,and electrons.The last two are used for fixation of carbon dioxide to give carbohydrates.In artificial processes,the coupling of water oxidation to evolve O2and water reduction to evolve H2is known as water splitting,which is an attractive method for solar energy conversion and storage.Because water oxidation is a thermodynamically uphill reaction and is kinetically slow,this reaction causes a bottleneck in large‐scale water splitting.As a consequence,the development of new and efficient water oxidation catalysts(WOCs)has attracted extensive attention.Recent efforts have identified a variety of mononuclear earth‐abundant transition‐metal complexes as active and stable molecular WOCs.This review article summarizes recent progress in research on mononuclear catalysts that are based on first‐row transition‐metal elements,namely manganese,iron,cobalt,nickel,and copper.Particular attention is paid to catalytic mechanisms and the key O?O bond formation steps.This information is critical for designing new catalysts that are highly efficient and stable. 展开更多
关键词 Water oxidation O-O bond formation Oxygen evolution First‐row transition metal ELECTROCATALYSIS
下载PDF
Visible light-responsive carbon-decorated p-type semiconductor CaFe_2O_4 nanorod photocatalyst for efficient remediation of organic pollutants 被引量:4
9
作者 Xin Liu Yuhong Zhang +4 位作者 Yushuai Jia Junzhe Jiang Yabin Wang Xiangshu Chen Tian Gui 《Chinese Journal of Catalysis》 EI CSCD 北大核心 2017年第10期1770-1779,共10页
We report the fabrication and photocatalytic property of a composite of C/CaFe2O4nanorods(NRs)in an effort to reveal the influence of carbon modification.It is demonstrated that the photocatalytic degradation activity... We report the fabrication and photocatalytic property of a composite of C/CaFe2O4nanorods(NRs)in an effort to reveal the influence of carbon modification.It is demonstrated that the photocatalytic degradation activity is dependent on the mass ratio of C to CaFe2O4.The optimal carbon content is determined to be58wt%to yield a methylene blue(MB)degradation rate of0.0058min.1,which is4.8times higher than that of the pristine CaFe2O4NRs.The decoration of carbon on the surface of CaFe2O4NRs improves its adsorption capacity of the MB dye,which is specifically adsorbed on the surface as a monolayer according to the adsorption isotherm analysis.The trapping experiments of the reactive species indicate that superoxide radicals(.O2)are the main active species responsible for the removal of MB under visible‐light irradiation.Overall,the unique feature of carbon coating enables the efficient separation and transfer of photogenerated electrons and holes,strengthens the adsorption capacity of MB,and improves the light harvesting capability,hence enhancing the overall photocatalytic degradation of MB. 展开更多
关键词 p‐type semiconductor CaFe2O4 Carbon coating Nanorod Composite photocatalyst Degradation of methylene blue
下载PDF
NiFe layered double-hydroxide nanoparticles for efficiently enhancing performance of BiVO_4 photoanode in photoelectrochemical water splitting 被引量:3
10
作者 Qizhao Wang Tengjiao Niu +2 位作者 Lei Wang Jingwei Huang Houde She 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第4期613-618,共6页
A bismuth vanadate(BiVO4)photoanode with a cocatalyst consisting of NiFe layered double‐hydroxide(NiFe‐LDH)nanoparticles was fabricated for photoelectrochemical(PEC)water splitting.NiFe‐LDH nanoparticles,which can ... A bismuth vanadate(BiVO4)photoanode with a cocatalyst consisting of NiFe layered double‐hydroxide(NiFe‐LDH)nanoparticles was fabricated for photoelectrochemical(PEC)water splitting.NiFe‐LDH nanoparticles,which can improve light‐absorption capacities and facilitate efficient hole transfer to the surface,were deposited on the surface of the BiVO4 photoanode by a hydrothermal method.All the samples were characterized using X‐ray diffraction,scanning electron microscopy,and diffuse‐reflectance spectroscopy.Linear sweep voltammetry and current‐time plots were used to investigate the PEC activity.The photocurrent response of NiFe‐LDH/BiVO4 at 1.23 V vs the reversible hydrogen electrode was higher than those of Ni(OH)2/BiVO4,Fe(OH)2/BiVO4 and pure BiVO4 electrodes under visible‐light illumination.NiFe‐LDH/BiVO4 also gave a superior PEC hydrogen evolution performance.Furthermore,the stability of the NiFe‐LDH/BiVO4 photoanode was excellent compared with that of the bare BiVO4 photoanode,and offers a novel method for solar‐assisted water splitting. 展开更多
关键词 NiFe layered double‐hydroxide nanoparticles BiVO4 photoanode Photoelectrochemical water splitting Photoelectrocatalysis
下载PDF
Simple synthesis of nitrogen‐doped carbon spheres as a highly efficient metal‐free electrocatalyst for the oxygen reduction reaction 被引量:4
11
作者 Jinhui Tong Wenyan Li +5 位作者 Lili Bo Wenhui Wang Yuliang Li Tao Li Qi Zhang Haiyan Fan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第6期1138-1145,共8页
In the present work, nitrogen‐doped carbon spheres were synthesized through a simple hydro‐thermal treatment using glucose and melamine as inexpensive carbon and nitrogen sources, re‐spectively. The ratio of melami... In the present work, nitrogen‐doped carbon spheres were synthesized through a simple hydro‐thermal treatment using glucose and melamine as inexpensive carbon and nitrogen sources, re‐spectively. The ratio of melamine to glucose and annealing temperature were optimized. The final optimal sample exhibited a catalytic activity for the oxygen reduction reaction(ORR) that was supe‐rior than that of commercial 20%Pt/C in 0.1 mol/L KOH. It revealed an onset potential of –22.6 mV and a half‐wave potential of –133.6 mV (vs. Ag/AgCl), which are 7.2 and 5.9 mV more positive than those of the 20%Pt/C catalyst, respectively, as well as a limiting current density of 4.6 mA/cm^2, which is 0.2 mA/cm^2 higher than that of the 20%Pt/C catalyst. The catalyst also exhibited higher stability and superior durability against methanol than 20%Pt/C. Moreover, ORRs on this catalyst proceed through a more effective 4 e^– path. The above mentioned superiority of the as‐prepared catalyst makes it promising for fuel cells. 展开更多
关键词 NITROGEN DOPING Carbon SPHERES Metal‐freecatalyst Oxygen reduction reaction
下载PDF
Combination of binary active sites into heterogeneous porous polymer catalysts for efficient transformation of CO_(2) under mild conditions 被引量:3
12
作者 Zhifeng Dai Yongquan Tang +7 位作者 Fei Zhang Yubing Xiong Sai Wang Qi Sun Liang Wang Xiangju Meng Leihong Zhao Feng-Shou Xiao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第4期618-626,共9页
The transformation of CO_(2)into cyclic carbonates via atom-economical cycloadditions with epoxides has recently attracted tremendous attention.On one hand,though many heterogeneous catalysts have been developed for t... The transformation of CO_(2)into cyclic carbonates via atom-economical cycloadditions with epoxides has recently attracted tremendous attention.On one hand,though many heterogeneous catalysts have been developed for this reaction,they typically suffer from disadvantages such as the need for severe reaction conditions,catalyst loss,and large amounts of soluble co-catalysts.On the other hand,the development of heterogeneous catalysts featuring multiple and cooperative active sites,remains challenging and desirable.In this study,we prepared a series of porous organic catalysts(POP-PBnCl-TPPMg-x)via the copolymerization metal-porphyrin compounds and phosphonium salt monomers in various ratios.The resulting materials contain both Lewis-acidic and Lewis-basic active sites.The molecular-level combination of these sites in the same polymer allows these active sites to work synergistically,giving rise to excellent performance in the cycloaddition reaction of CO_(2)with epoxides,under mild conditions(40℃ and 1 atm CO_(2))in the absence of soluble co-catalysts.POP-PBnCl-TPPMg-12 can also efficiently fixate CO_(2)under low-CO_(2)-concentration(15%v/v N2)conditions representative of typical CO_(2)compositions in industrial exhaust gases.More importantly,this catalyst shows excellent recyclability and can easily be separated and reused at least five times while maintaining its activity.In view of their heterogeneous nature and excellent catalytic performance,the obtained catalysts are promising candidates for the transformation of industrially generated CO_(2)into high value-added chemicals. 展开更多
关键词 COPOLYMERIZATION Porous organic polymers Binary active sites Carbon dioxide fixation Heterogeneous catalysis
下载PDF
A review on tungsten-trioxide-based photoanodes for water oxidation 被引量:7
13
作者 Jingwei Huang Pengfei Yue +2 位作者 Lei Wang Houde She Qizhao Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第10期1408-1420,共13页
Photoelectrochemical(PEC)water splitting capable of reducing and oxidizing water into hydrogen and oxygen in a generation mode of spatial separation has gained extensive popularity.In order to effectively produce hydr... Photoelectrochemical(PEC)water splitting capable of reducing and oxidizing water into hydrogen and oxygen in a generation mode of spatial separation has gained extensive popularity.In order to effectively produce hydrogen at the photocathode of a PEC cell,the photoanode,where the oxygen evolution reaction occurs,should be systematically developed on priority.In particular,WO3 has been identified as one of the most promising photoanode materials owing to its narrow band gap and high valence band position.Its practical implementation,however,is still limited by excessive electron–hole recombination and poor water oxidation kinetics.This review presents the various strategies that have been studied for enhancing the PEC water oxidation performance of WO3,such as controlling the morphology,introducing defects,constructing a heterojunction,loading a cocatalyst,and exploiting the plasmonic effect.In addition,the possible future research directions are presented. 展开更多
关键词 WO3 photoanode Water splitting Defect HETEROJUNCTION COCATALYST
下载PDF
Effect of Li content on microstructure and mechanical property of Mg-xLi-3(Al-Si) alloys 被引量:3
14
作者 Cheng ZHANG Liang WU +6 位作者 Zi-long ZHAO Zhi-hui XIE Guang-sheng HUANG Lei LIU Bin JIANG Andrej ATRENS Fu-sheng PAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第12期2506-2513,共8页
Mg-4 Li-3(Al-Si),Mg-8 Li-3(Al-Si)and Mg-12 Li-3(Al-Si)alloys based on theα-Mg,α-Mg+β-Li,β-Li phases,respectively,were produced to investigate the effect of alloying with Al-Si eutectic on the microstructure and me... Mg-4 Li-3(Al-Si),Mg-8 Li-3(Al-Si)and Mg-12 Li-3(Al-Si)alloys based on theα-Mg,α-Mg+β-Li,β-Li phases,respectively,were produced to investigate the effect of alloying with Al-Si eutectic on the microstructure and mechanical properties of the three alloys.Alloying with the Al-Si eutectic of Mg-xLi(x=4,8 and 12 wt.%)alloys caused the formation of different types of Al-Li precipitates:Al3Li,AlLi and Li3Al2,respectively.Also,considerable quantities of Mg2Si phase particles were found in the three alloys.The results of tensile tests showed that the Mg-4Li-3(Al-Si)alloy exhibited the highest ultimate tensile strength(UTS)of 249 MPa but the lowest elongation of 6.3%.The Mg-12Li-3(Al-Si)alloy had the highest elongation of 26%but the lowest UTS of 173 MPa.The different mechanical properties were attributed to the different crystal structures of the three alloys and the precipitate with different type,morphology and distribution. 展开更多
关键词 Mg-Li alloy Al-Si eutectic second phase tensile strength ELONGATION
下载PDF
In-situ layered double hydroxides on Mg−Ca alloy:Role of calcium in magnesium alloy 被引量:3
15
作者 Yu XIA Liang WU +9 位作者 Wen-hui YAO Meng HAO Jing CHEN Cheng ZHANG Tao WU Zhi-hui XIE Jiang-feng SONG Bin JIANG Yan-long MA Fu-sheng PAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第6期1612-1627,共16页
Mg−Al layered double hydroxides(LDHs),produced on cast Mg−xCa(x=0.5,0.8,2.0,wt.%)alloys by an in-situ growth method,showed good corrosion resistance compared to the bare magnesium substrate.The influence mechanism of ... Mg−Al layered double hydroxides(LDHs),produced on cast Mg−xCa(x=0.5,0.8,2.0,wt.%)alloys by an in-situ growth method,showed good corrosion resistance compared to the bare magnesium substrate.The influence mechanism of the second phase(Mg_(2)Ca)on LDHs production was investigated.Increasing Ca content increased the amount of Mg_(2)Ca,decreasing the grain size and the corrosion rate of the alloys.The increased amount of the second phase particles and the grain refinement promoted the growth of LDHs,and thus led to the decreasing of corrosion rate of the Mg−xCa alloys with LDHs.A higher Mg_(2)Ca amount resulted in forming fluffy LDHs.Due to the dual effects of the second phase(Mg_(2)Ca)for LDHs growth and microgalvanic corrosion,LDHs/Mg−0.8Ca showed the lowest corrosion rate. 展开更多
关键词 Mg−Ca alloys Mg−Al layered double hydroxides corrosion resistance in-situ growth SELF-HEALING
下载PDF
Ultrafast Infrared Spectroscopic Study of Microscopic Structural Dynamics in pH Stimulus-Responsive Hydrogels 被引量:1
16
作者 Jian Hong De-xia Zhou +2 位作者 Hong-xing Hao Min Zhao Hong-tao Bian 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第5期540-546,I0078,共8页
Hydrogels show versatile properties and are of great interest in the fields of bioelectronics and tissue engineering.Understanding the dynamics of the water molecules trapped in the three-dimensional polymeric network... Hydrogels show versatile properties and are of great interest in the fields of bioelectronics and tissue engineering.Understanding the dynamics of the water molecules trapped in the three-dimensional polymeric networks of the hydrogels is crucial to elucidate their mechanical and swelling properties at the molecular level.In this report,the poly(DMAEMA-co-AA)hydrogels were synthesized and characterized by the macroscopic swelling measurements under different pH conditions.Furthermore,the microscopic structural dynamics of pH stimulus-responsive hydrogels were studied using FTIR and ultrafast IR spectroscopies from the viewpoint of the SCN-anionic solute as the local vibrational reporter.Ultrafast IR spectroscopic measurements showed the time constants of the vibrational population decay of SCN-were increased from 14±1 ps to 20±1 ps when the pH of the hydrogels varied from2.0 to 12.0.Rotational anisotropy measurements further revealed that the rotation of SCNanionic probe was restricted by the three-dimensional network formed in the hydrogels and the rotation of SCN-anionic probe cannot decay to zero especially at the pH of 7.0.These results are expected to provide a molecular-level understanding of the microscopic structure of the cross-linked polymeric network in the pH stimulus-responsive hydrogels. 展开更多
关键词 Ultrafast IR spectroscopy HYDROGEL pH stimulus responsive Structural dynamics
下载PDF
Alkali metal cation effects on electrocatalytic CO_(2)reduction with iron porphyrins 被引量:1
17
作者 Kai Guo Haitao Lei +5 位作者 Xialiang Li Zongyao Zhang Yabo Wang Hongbo Guo Wei Zhang Rui Cao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第9期1439-1444,共6页
The electrocatalytic CO_(2)reduction reaction(CO_(2)RR)has attracted increasing attention in recentyears.Practical electrocatalysis of CO_(2)RR must be carried out in aqueous solutions containing electrolytesof alkali... The electrocatalytic CO_(2)reduction reaction(CO_(2)RR)has attracted increasing attention in recentyears.Practical electrocatalysis of CO_(2)RR must be carried out in aqueous solutions containing electrolytesof alkali metal cations such as sodium and potassium.Although considerable efforts havebeen made to design efficient electrocatalysts for CO_(2)RR and to investigate the structure–activityrelationships using molecular model complexes,only a few studies have been investigated the effectof alkali metal cations on electrocatalytic CO_(2)RR.In this study,we report the effect of alkali metalcations(Na^(+)and K^(+))on electrocatalytic CO_(2)RR with Fe porphyrins.By running CO_(2)RR electrocatalysisin dimethylformamide(DMF),we found that the addition of Na^(+)or K^(+)considerably improves thecatalytic activity of Fe chloride tetrakis(3,4,5‐trimethoxyphenyl)porphyrin(FeP).Based on thisresult,we synthesized an Fe porphyrin^(N)18C6‐FeP bearing a tethered 1‐aza‐18‐crown‐6‐ether(^(N)18C6)group at the second coordination sphere of the Fe site.We showed that with the tethered^(N)18C6 to bind Na^(+)or K^(+),^(N)18C6‐FeP is more active than FeP for electrocatalytic CO_(2)RR.This workdemonstrates the positive effect of alkali metal cations to improve CO_(2)RR electrocatalysis,which isvaluable for the rational design of new efficient catalysts. 展开更多
关键词 CO2 reduction Molecular electrocatalysis Alkali metal cation effect Iron porphyrin Structure‐activity relationship
下载PDF
Photodynamics of Methyl-Vinyl Criegee Intermediate:Different Conical Intersections Govern the Fates of Syn/Anti Configurations
18
作者 Ya-zhen Li Jia-wei Yang +2 位作者 Lily Makroni Wen-liang Wang Feng-yi Liu 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第5期595-602,I0039-I0056,I0079,共27页
Methyl vinyl ketone oxide,an unsaturated four-carbon Criegee intermediate produced from the ozonolysis of isoprene has been recognized to play a key role in determining the tropospheric OH concentration.It exists in f... Methyl vinyl ketone oxide,an unsaturated four-carbon Criegee intermediate produced from the ozonolysis of isoprene has been recognized to play a key role in determining the tropospheric OH concentration.It exists in four configurations(anti-anti,anti-syn,synanti,and syn-syn)due to two different substituents of saturated methyl and unsaturated vinyl groups.In this study,we have carried out the electronic structure calculation at the multi-configurational CASSCF and multi-state MS-CASPT2 levels,as well as the trajectory surface-hopping nonadiabatic dynamics simulation at the CASSCF level to reveal the different fates of syn/anti configurations in photochemical process.Our results show that the dominant channel for the S1-state decay is a ring closure,isomerization to dioxirane,during which,the syn(C-O)configuration with an intramolecular hydrogen bond shows slower nonadiabatic photoisomerization.More importantly,it has been found for the first time in photochemistry of Criegee intermediate that the cooperation of two heavy groups(methyl and vinyl)leads to an evident pyramidalization of C3 atom in methyl-vinyl Criegee intermediate,which then results in two structurally-independent minimal-energy crossing points(CIs)towards the syn(C-O)and anti(C-O)sides,respectively.The preference of surface hopping for a certain CI is responsible for the different dynamics of each configuration. 展开更多
关键词 Trajectory surface hopping nonadiabatic dynamics Criegee intermediate Dioxirane PHOTOISOMERIZATION Minimal-energy crossing point
下载PDF
Ammonium cobalt phosphate with asymmetric coordination sites for enhanced electrocatalytic water oxidation
19
作者 Jing Qi Mingxing Chen +1 位作者 Wei Zhang Rui Cao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第7期1955-1962,共8页
Cobalt‐based materials have been considered as promising candidates to electrocatalyze water oxidation.However,the structure‐performance correlation remains largely elusive,due to the com‐plex material structures a... Cobalt‐based materials have been considered as promising candidates to electrocatalyze water oxidation.However,the structure‐performance correlation remains largely elusive,due to the com‐plex material structures and diverse performance‐influencing factors in those Co‐based catalysts.In this work,we designed two cobalt phosphates with distinct Co symmetry to explore the effect of coordination symmetry on electrocatalytic water oxidation.The two analogues have similar mor‐phology,Co valence and 6‐coordinated Co octahedron,but with different coordination symmetry.In contrast to symmetric Co_(3)(PO_(4))2·8H_(2)O,asymmetric NH_(4)CoPO_(4)·H_(2)O exhibited enhanced electrocata‐lytic water oxidation activity in a neutral aqueous solution.It is proven that,by experimental and theoretical studies,the asymmetric Co coordination sites can facilitate the surface reconstruction under anodic polarization to boost the electrocatalysis.Based on this contrastive platform with distinct symmetry differences,the preferred configuration in cobalt‐oxygen octahedrons for water oxidation has been straightforwardly assigned. 展开更多
关键词 Ammonium cobalt phosphate Coordination symmetry Surface reconstruction ELECTROCATALYSIS Oxygen evolution reaction
下载PDF
Black phosphorus incorporated cobalt oxide:Biomimetic channels for electrocatalytic water oxidation
20
作者 Xueqing Gao Xiaomeng Liu +3 位作者 Shujiao Yang Wei Zhang Haiping Lin Rui Cao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第4期1123-1130,共8页
Learning from nature photosynthesis,the development of efficient artificial catalysts for water oxidation is an ongoing challenge.Herein,a lamellar cobalt oxide(CoO),black phosphorus(BP)and reduced graphene oxide(RGO)... Learning from nature photosynthesis,the development of efficient artificial catalysts for water oxidation is an ongoing challenge.Herein,a lamellar cobalt oxide(CoO),black phosphorus(BP)and reduced graphene oxide(RGO)hybrid electrocatalyst is reported.BP domains are anchored on RGO and coated with CoO via P–O bonds.The widespread P–O bond network constitutes the proton acceptor and forms a proton exit channel,akin to the use of Asp61 in Photosystem II(PSII).The innermost kernel layer RGO serves as the current collector and forms an electron exit channel,mimicking the function of Tyr161 for charge transfer.The outermost encapsulation CoO layer acts as water oxidation catalyst(WOC).These biology‐inspired features endow an outstanding OER performance of the hybrid material with a low overpotential of 206 mV at a current density of 10 mA cm^(-2).This work provides a new design guide for OER electrocatalysts through constructing two specialized channels for proton and electron transfer. 展开更多
关键词 ELECTROCATALYSIS Water oxidation Oxygen evolution reaction Proton transfer Electron transfer
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部