期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于混合注意力神经网络的表情识别
1
作者
廖国清
陈世国
+1 位作者
董子平
蔡温娜
《信息与电脑》
2023年第2期79-83,共5页
针对人脸表情识别研究中存在的表情类间差异小而导致的表情易混淆的问题,提出了一种改进模型。通过在残差网络的基础上引入混合注意力机制,强化模型对表情局部特征的关注,通过引入Focal Loss强化模型对复杂表情的学习,引入Center Loss...
针对人脸表情识别研究中存在的表情类间差异小而导致的表情易混淆的问题,提出了一种改进模型。通过在残差网络的基础上引入混合注意力机制,强化模型对表情局部特征的关注,通过引入Focal Loss强化模型对复杂表情的学习,引入Center Loss帮助模型过滤出显著特征。实验表明,该方法在公开人脸表情数据集RER2013上的识别准确率为73.74%。
展开更多
关键词
表情识别
注意力机制
卷积神经网络(CNN)
损失函数
下载PDF
职称材料
题名
基于混合注意力神经网络的表情识别
1
作者
廖国清
陈世国
董子平
蔡温娜
机构
贵州师范大学物理电子与科学学院
出处
《信息与电脑》
2023年第2期79-83,共5页
文摘
针对人脸表情识别研究中存在的表情类间差异小而导致的表情易混淆的问题,提出了一种改进模型。通过在残差网络的基础上引入混合注意力机制,强化模型对表情局部特征的关注,通过引入Focal Loss强化模型对复杂表情的学习,引入Center Loss帮助模型过滤出显著特征。实验表明,该方法在公开人脸表情数据集RER2013上的识别准确率为73.74%。
关键词
表情识别
注意力机制
卷积神经网络(CNN)
损失函数
Keywords
expression recognition
attention mechanism
Convolutional Neural Network(CNN)
loss function
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于混合注意力神经网络的表情识别
廖国清
陈世国
董子平
蔡温娜
《信息与电脑》
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部