The G3 and CBS-QB3 theoretical methods are employed to study the decomposition of CF3OH into FCFO and HF by water, water dimmer, and ammonia. The decomposition of CF3OH into FCFO and HF is unlikely to occur in the atm...The G3 and CBS-QB3 theoretical methods are employed to study the decomposition of CF3OH into FCFO and HF by water, water dimmer, and ammonia. The decomposition of CF3OH into FCFO and HF is unlikely to occur in the atmosphere due to the high activated energy of 88.7 k J/mol at the G3 level of theory. However, the computed results predict that the barrier for unimolecular decomposition of CF3OH is decreased to 25.1 kJ/mol from 188.7 k J/mol with the aid of NH3 at the G3 level of theory, which shows that the ammonia play a strong catalytic effect on the split of CF3OH. In addition, the calculated rate constants show that the decomposition of CF3OH by NH3 is faster than those of H2O and the water dimmer by 10^9 and 10^5 times respectively. The rate constants combined with the corresponding concentrations of these species demonstrate that the reaction CF3OH with NH3 via TS4 is of great importance for the decomposition of CF3OH in the atmosphere.展开更多
基于差异度聚类分析,提出了一种新的异常入侵检测算法DCAIDA,详细介绍了基于差异度聚类分析的用户行为模型建立算法和异常入侵检测算法.通过对原始用户行为数据进行差异度聚类分析,建立用户行为模型,并依据聚类模型对实时的用户行为进...基于差异度聚类分析,提出了一种新的异常入侵检测算法DCAIDA,详细介绍了基于差异度聚类分析的用户行为模型建立算法和异常入侵检测算法.通过对原始用户行为数据进行差异度聚类分析,建立用户行为模型,并依据聚类模型对实时的用户行为进行分类,以此判断是否发生入侵.在KDD CUP 1999上的仿真实验结果表明:该算法检测率高、误报率低,且对新攻击类型有一定的检测能力,可实现预期效果.展开更多
Quantum chemical calculations are performed to study the reactions of OH and ozone with- out and with water to estimate whether the single water molecule can decrease the energy barrier of the OH radical reaction with...Quantum chemical calculations are performed to study the reactions of OH and ozone with- out and with water to estimate whether the single water molecule can decrease the energy barrier of the OH radical reaction with ozone. The calculated results demonstrate that the single water molecule can reduce the activated barrier of the naked OH+Oa reaction with the value of about 4.18 kJ/mol. In addition, the transition state theory is carried out to determine whether the single water molecule could enhance the rate constant of the OH+O3 reaction. The computed kinetic data indicate that the rate of the ozone reaction with the formed complexes between OH and water is much slower than that of the OH+O3 reaction, whereas the rate constant of OH reaction with the formed H20---Oa complex is 2 times greater than that of the naked OH radical with ozone reaction. However, these processes in the atmosphere are not important because the reactions can not compete well with the naked reaction of OH with ozone under atmospheric condition.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.10865003) and the Guizhou University for Nationalities (2010). The authors thank professors W. T. Duncan, R. L. Bell, and T. N. Truong or providing the rate program through the internet.
文摘The G3 and CBS-QB3 theoretical methods are employed to study the decomposition of CF3OH into FCFO and HF by water, water dimmer, and ammonia. The decomposition of CF3OH into FCFO and HF is unlikely to occur in the atmosphere due to the high activated energy of 88.7 k J/mol at the G3 level of theory. However, the computed results predict that the barrier for unimolecular decomposition of CF3OH is decreased to 25.1 kJ/mol from 188.7 k J/mol with the aid of NH3 at the G3 level of theory, which shows that the ammonia play a strong catalytic effect on the split of CF3OH. In addition, the calculated rate constants show that the decomposition of CF3OH by NH3 is faster than those of H2O and the water dimmer by 10^9 and 10^5 times respectively. The rate constants combined with the corresponding concentrations of these species demonstrate that the reaction CF3OH with NH3 via TS4 is of great importance for the decomposition of CF3OH in the atmosphere.
文摘基于差异度聚类分析,提出了一种新的异常入侵检测算法DCAIDA,详细介绍了基于差异度聚类分析的用户行为模型建立算法和异常入侵检测算法.通过对原始用户行为数据进行差异度聚类分析,建立用户行为模型,并依据聚类模型对实时的用户行为进行分类,以此判断是否发生入侵.在KDD CUP 1999上的仿真实验结果表明:该算法检测率高、误报率低,且对新攻击类型有一定的检测能力,可实现预期效果.
基金This work was supported by the National Natural Science Foundation of China (No.10865003) and the Science and Technology Foundation of GuiZhou Province, China (No.[201112107). We thank the Key Laboratory of Guizhou High Performance Computational Chemistry for computer time.
文摘Quantum chemical calculations are performed to study the reactions of OH and ozone with- out and with water to estimate whether the single water molecule can decrease the energy barrier of the OH radical reaction with ozone. The calculated results demonstrate that the single water molecule can reduce the activated barrier of the naked OH+Oa reaction with the value of about 4.18 kJ/mol. In addition, the transition state theory is carried out to determine whether the single water molecule could enhance the rate constant of the OH+O3 reaction. The computed kinetic data indicate that the rate of the ozone reaction with the formed complexes between OH and water is much slower than that of the OH+O3 reaction, whereas the rate constant of OH reaction with the formed H20---Oa complex is 2 times greater than that of the naked OH radical with ozone reaction. However, these processes in the atmosphere are not important because the reactions can not compete well with the naked reaction of OH with ozone under atmospheric condition.