期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于预训练语言模型的安卓恶意软件检测方法 被引量:1
1
作者 印杰 黄肖宇 +2 位作者 刘家银 牛博威 谢文伟 《计算机工程与科学》 CSCD 北大核心 2023年第8期1433-1442,共10页
近年来,基于有监督机器学习的安卓恶意软件检测方法取得了一定进展。但是,由于恶意软件样本搜集困难,带标签的数据集规模一般较小,导致训练出的有监督模型泛化能力有限。针对这一问题,提出无监督和有监督相结合的恶意软件检测方法。首先... 近年来,基于有监督机器学习的安卓恶意软件检测方法取得了一定进展。但是,由于恶意软件样本搜集困难,带标签的数据集规模一般较小,导致训练出的有监督模型泛化能力有限。针对这一问题,提出无监督和有监督相结合的恶意软件检测方法。首先,使用无监督方法预训练语言模型,从大量无标记APK样本中学习字节码中丰富、复杂的语义关系,提高模型的泛化能力。然后,利用有标记的恶意软件样本对语言模型进行微调,使其能更有效地检测恶意软件。在Drebin等实验数据集上的实验结果表明,相比基准方法,提出的方法泛化能力更好,检测性能更优,最高检测准确率达98.7%。 展开更多
关键词 安卓 恶意软件检测 预训练语言模型 无监督学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部