期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于条件度量迁移学习的机械故障诊断可解释方法
1
作者 路飞宇 佟庆彬 +2 位作者 姜学东 徐建军 霍静怡 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第7期250-262,共13页
迁移学习技术可以减小源域和目标域特征之间的分布差异。然而,在跨设备场景下,现有研究往往难以衡量并缩小不同设备间数据的条件分布差异,导致模型在源域获得的知识不能很好地迁移到目标域。此外,在实际的故障诊断场景中,决策者通常需... 迁移学习技术可以减小源域和目标域特征之间的分布差异。然而,在跨设备场景下,现有研究往往难以衡量并缩小不同设备间数据的条件分布差异,导致模型在源域获得的知识不能很好地迁移到目标域。此外,在实际的故障诊断场景中,决策者通常需要理解模型为何将某些数据归类为特定故障类型。由于深度学习模型的复杂性,其往往被看作是“黑匣子”,难以解释其内部工作机制。为了克服上述缺点,提出一种基于条件度量迁移学习的可解释故障诊断方法。首先利用Hilbert包络谱分析将时域信号转为频域信号;其次搭建深度孪生卷积神经网络和分类器,从频域中提取源域和目标域数据中的高维特征并做分类训练;然后将可解释的条件核Bures度量嵌入到无监督学习的损失函数中,提高条件分布下的特征适配能力和模型可解释性;最后利用博弈论中的SHAP方法对模型诊断结果做基于包络谱的事后可解释分析。在3种设备的6种跨设备轴承故障诊断任务中开展试验,对所提方法和其他相关对比方法进行评估,结果表明提出的方法可以有效地提高跨设备机械故障诊断精度,达到了平均99.47%的诊断精度。并解释了哪些频率点对模型的决策起到关键作用。 展开更多
关键词 条件度量 机械故障诊断 迁移学习 SHAP
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部