Background,aim,and scope Solar radiation is the main source of energy for terrestrial ecosystems.Small changes in the absorption of solar radiation at the ground surface can have a significant impact on the climatic e...Background,aim,and scope Solar radiation is the main source of energy for terrestrial ecosystems.Small changes in the absorption of solar radiation at the ground surface can have a significant impact on the climatic environment.Natural and anthropogenic changes in ground cover are important factors affecting the absorption of solar radiation at the ground surface.This phenomenon is particularly pronounced in the mid and high latitudes.In order to quantify the inf luence of surface cover change on the absorption of solar radiation at the surface and to provide a scientific basis for changes in the climatic environment,this paper analyzed ground cover change,ground absorbed solar radiation change and the effect of ground cover change on ground absorbed solar radiation in the Three Northeastern Provinces of China from 2001 to 2018.Materials and methods In this study,the Three Northeastern Provinces of China were used as the study area.Firstly,satellite remote sensing data were used to obtain land cover data and albedo data for Aug.1st of each year in 2001,2005,2010,2015 and 2018.The albedo data were further used to calculate the absorbed solar radiation data at the ground surface.Next,the land cover data were used to count the area changes and shifts of different land classes over the five-year period.The land cover data were overlaid with the surface absorbed solar radiation data to obtain the mean and standard deviation of radiation absorption for different ground classes.The surface absorbed solar radiation data were subtracted to obtain the changes in surface absorbed solar radiation for 2001-2005,2005-2010,2010-2015 and 2015-2018.Ultimately,we used a combination of shifted changes in ground classes and changes in surface absorbed solar radiation data,with unchanged ground classes as a baseline and data such as slope orientation as an aid.We analyzed the effect of ground cover change on surface absorbed solar radiation at regional and pixel point scales.Results(1)The area of woodland and waters in the Three Northeastern Provinces of China increased and then decreased from 2001 to 2018,with an overall increase of 3.96%and 10.51%respectively.Cropland decreased and then increased,with a total decrease of 1.22%.Grassland continued to decrease,with an overall decrease of 19.36%.Building sites increased all the time,with a total increase of 11.08%.The main types of ground cover shifted were woodland,cropland and grassland.The main factors for the change in ground cover were China’s woodland protection policy and the saturation of the total woodland stock.(2)The five ground types absorb solar radiation in the order of waters>building sites>woodland>grassland>cropland.The surface absorption of solar radiation in the Songnen Plain,the Sanjiang Plain and the Songhua River Basin flowing through the Songnen Plain and the Sanjiang Plain varies significantly,by more than 25 W·m^(-2).(3)Changes in the ground cover type affected the absorption of solar radiation energy by the ground surface.There was a clear trend of interconversion between waters and cropland/grassland,cropland and woodland/grassland.In particular,the conversion of waters to both cropland and grassland radiation absorption values decreased significantly,while the opposite increased.The absolute difference between waters and cropland was a maximum of -156.66 W·m^(-2)in 2010-2015,and between waters and grassland was a maximum of 102.36 W·m^(-2) in 2005-2010.The radiative absorption values of woodland and grassland reclamation declined and conversely increased.The absolute difference between woodland and cropland was a maximum of-13.94 W·m^(-2) in 2010-2015 when woodland converted to cropland,and between grassland and cropland was a maximum of 22.36 W·m^(-2) in 2001-2005 when cropland converted to grassland,respectively.Discussion Ground cover changes in the Three Northeastern Provinces of China from 2001-2018 were inextricably linked to natural factors and the inf luence of Chinese national policies.The main inf luencing factors were China’s woodland protection policy,restoration of woodland fire sites,saturation of total woodland,optimization of cropland patterns,sanding of grassland,expansion of water conservancy projects,and urbanization expansion.There were differences in the radiation absorption characteristics of different ground cover types.This was due to the nature of the ground type itself and the regional environment.When ground cover types changed,their ability to absorb solar radiation also changed.The degree of change could be inf luenced by different ground types and different environmental factors.Different spatial scales can also produce variability.We need to consider the effects of ground cover change on the absorption of solar radiation at the surface in an integrated and comprehensive way.Conclusions The Three Northeastern Provinces of China had frequent changes in ground cover from 2001-2018,with the area of grassland decreased by almost 20%.These changes were due to natural environmental change and policies issued by China since the 21st century.The extent to which solar radiation was absorbed by different ground cover types was different,with grassland being the strongest and cropland the least.In the past few years,the Songnen Plain and Sanjiang Plain regions were the most significant changes in the absorption of solar radiation by the ground cover.The change in ground cover type led to a change in solar radiation absorption at the ground surface,with the conversion of waters to cropland or grassland and the conversion of cropland to woodland or grassland showing the greatest change in radiation absorption values,and vice versa.Of these,the absolute difference in the conversion of waters to cropland amounts to-156.66 W·m^(-2) in 2010-2015.The variation in the absorption of solar radiation at the ground surface was related to the characteristics of the ground class itself,but was also limited by the regional environment.Recommendations and perspectives This study showed that surface cover change can affect the absorption of solar radiation at the surface to varying degrees.The unchanged land classes were used as a comparative analysis in this paper,and it was clear from the paper that some of the unchanged land classes showed significant changes in radiation absorption that should be of interest in future studies.展开更多
Currently,the fault sliding speed functions or source–time functions used in theoretical seismogram calculations have only produced theoretical results;that is,the results of the fault speed–time functions have been...Currently,the fault sliding speed functions or source–time functions used in theoretical seismogram calculations have only produced theoretical results;that is,the results of the fault speed–time functions have been obtained only from theoretical studies,and have not been validated using the measured data.This paper signifi cantly improves the method for calculating fault sliding speed using the Doppler eff ect,from the following four perspectives.First,the paper theoretically demonstrates how to confirm that the seismic waves received in some frequency bands by two diff erent receivers are emitted by the same source.Second,the paper proposes a method to determine the similarity of seismic waves received by two diff erent receivers in some frequency bands;it applies the relative change at the two receivers in Fourier amplitude standard deviation in some frequency bands,and determines that similar seismic waves are emitted by the same frequency bands.Third,to eliminate the interference of reflected and refracted waves,this study uses fault sliding time S-wave records for data processing.Finally,the paper replaces the long-time Fourier transform with short-time Fourier transform to enhance the positioning accuracy of fault sliding times.Based on these perspectives,the paper systematically summarizes a general methodology for calculating the fault sliding speed using the Doppler effect.This method is employed to calculate the fault sliding speed of the Wenchuan earthquake;the calculations reveal that there is a general correlation between the fault sliding speeds of the Wenchuan earthquake and the seismic moment changes.The results confi rm that the sliding speed of the Wenchuan earthquake fault possesses the characteristics of abrupt change,whereby a sudden increase in the sliding speed is followed by a rapid decrease.Generally,the sliding speed is not fast,and sometimes,no sliding occurs.There are obvious diff erences from the currently used sliding speed functions,such as the Haskell function,bell-shaped function,exponential function,and triangular function.To determine the fault sliding speed using the Doppler eff ect,only the earthquake records and locations of the epicenter and receivers are required,instead of using unknown crust parameters.In short,the proposed calculation method has clear physical meaning,and the required parameters are easier to obtain.展开更多
文摘Background,aim,and scope Solar radiation is the main source of energy for terrestrial ecosystems.Small changes in the absorption of solar radiation at the ground surface can have a significant impact on the climatic environment.Natural and anthropogenic changes in ground cover are important factors affecting the absorption of solar radiation at the ground surface.This phenomenon is particularly pronounced in the mid and high latitudes.In order to quantify the inf luence of surface cover change on the absorption of solar radiation at the surface and to provide a scientific basis for changes in the climatic environment,this paper analyzed ground cover change,ground absorbed solar radiation change and the effect of ground cover change on ground absorbed solar radiation in the Three Northeastern Provinces of China from 2001 to 2018.Materials and methods In this study,the Three Northeastern Provinces of China were used as the study area.Firstly,satellite remote sensing data were used to obtain land cover data and albedo data for Aug.1st of each year in 2001,2005,2010,2015 and 2018.The albedo data were further used to calculate the absorbed solar radiation data at the ground surface.Next,the land cover data were used to count the area changes and shifts of different land classes over the five-year period.The land cover data were overlaid with the surface absorbed solar radiation data to obtain the mean and standard deviation of radiation absorption for different ground classes.The surface absorbed solar radiation data were subtracted to obtain the changes in surface absorbed solar radiation for 2001-2005,2005-2010,2010-2015 and 2015-2018.Ultimately,we used a combination of shifted changes in ground classes and changes in surface absorbed solar radiation data,with unchanged ground classes as a baseline and data such as slope orientation as an aid.We analyzed the effect of ground cover change on surface absorbed solar radiation at regional and pixel point scales.Results(1)The area of woodland and waters in the Three Northeastern Provinces of China increased and then decreased from 2001 to 2018,with an overall increase of 3.96%and 10.51%respectively.Cropland decreased and then increased,with a total decrease of 1.22%.Grassland continued to decrease,with an overall decrease of 19.36%.Building sites increased all the time,with a total increase of 11.08%.The main types of ground cover shifted were woodland,cropland and grassland.The main factors for the change in ground cover were China’s woodland protection policy and the saturation of the total woodland stock.(2)The five ground types absorb solar radiation in the order of waters>building sites>woodland>grassland>cropland.The surface absorption of solar radiation in the Songnen Plain,the Sanjiang Plain and the Songhua River Basin flowing through the Songnen Plain and the Sanjiang Plain varies significantly,by more than 25 W·m^(-2).(3)Changes in the ground cover type affected the absorption of solar radiation energy by the ground surface.There was a clear trend of interconversion between waters and cropland/grassland,cropland and woodland/grassland.In particular,the conversion of waters to both cropland and grassland radiation absorption values decreased significantly,while the opposite increased.The absolute difference between waters and cropland was a maximum of -156.66 W·m^(-2)in 2010-2015,and between waters and grassland was a maximum of 102.36 W·m^(-2) in 2005-2010.The radiative absorption values of woodland and grassland reclamation declined and conversely increased.The absolute difference between woodland and cropland was a maximum of-13.94 W·m^(-2) in 2010-2015 when woodland converted to cropland,and between grassland and cropland was a maximum of 22.36 W·m^(-2) in 2001-2005 when cropland converted to grassland,respectively.Discussion Ground cover changes in the Three Northeastern Provinces of China from 2001-2018 were inextricably linked to natural factors and the inf luence of Chinese national policies.The main inf luencing factors were China’s woodland protection policy,restoration of woodland fire sites,saturation of total woodland,optimization of cropland patterns,sanding of grassland,expansion of water conservancy projects,and urbanization expansion.There were differences in the radiation absorption characteristics of different ground cover types.This was due to the nature of the ground type itself and the regional environment.When ground cover types changed,their ability to absorb solar radiation also changed.The degree of change could be inf luenced by different ground types and different environmental factors.Different spatial scales can also produce variability.We need to consider the effects of ground cover change on the absorption of solar radiation at the surface in an integrated and comprehensive way.Conclusions The Three Northeastern Provinces of China had frequent changes in ground cover from 2001-2018,with the area of grassland decreased by almost 20%.These changes were due to natural environmental change and policies issued by China since the 21st century.The extent to which solar radiation was absorbed by different ground cover types was different,with grassland being the strongest and cropland the least.In the past few years,the Songnen Plain and Sanjiang Plain regions were the most significant changes in the absorption of solar radiation by the ground cover.The change in ground cover type led to a change in solar radiation absorption at the ground surface,with the conversion of waters to cropland or grassland and the conversion of cropland to woodland or grassland showing the greatest change in radiation absorption values,and vice versa.Of these,the absolute difference in the conversion of waters to cropland amounts to-156.66 W·m^(-2) in 2010-2015.The variation in the absorption of solar radiation at the ground surface was related to the characteristics of the ground class itself,but was also limited by the regional environment.Recommendations and perspectives This study showed that surface cover change can affect the absorption of solar radiation at the surface to varying degrees.The unchanged land classes were used as a comparative analysis in this paper,and it was clear from the paper that some of the unchanged land classes showed significant changes in radiation absorption that should be of interest in future studies.
基金supported by the Educational Department Project of Liaoning province:LJYL040(No.551610001219)。
文摘Currently,the fault sliding speed functions or source–time functions used in theoretical seismogram calculations have only produced theoretical results;that is,the results of the fault speed–time functions have been obtained only from theoretical studies,and have not been validated using the measured data.This paper signifi cantly improves the method for calculating fault sliding speed using the Doppler eff ect,from the following four perspectives.First,the paper theoretically demonstrates how to confirm that the seismic waves received in some frequency bands by two diff erent receivers are emitted by the same source.Second,the paper proposes a method to determine the similarity of seismic waves received by two diff erent receivers in some frequency bands;it applies the relative change at the two receivers in Fourier amplitude standard deviation in some frequency bands,and determines that similar seismic waves are emitted by the same frequency bands.Third,to eliminate the interference of reflected and refracted waves,this study uses fault sliding time S-wave records for data processing.Finally,the paper replaces the long-time Fourier transform with short-time Fourier transform to enhance the positioning accuracy of fault sliding times.Based on these perspectives,the paper systematically summarizes a general methodology for calculating the fault sliding speed using the Doppler effect.This method is employed to calculate the fault sliding speed of the Wenchuan earthquake;the calculations reveal that there is a general correlation between the fault sliding speeds of the Wenchuan earthquake and the seismic moment changes.The results confi rm that the sliding speed of the Wenchuan earthquake fault possesses the characteristics of abrupt change,whereby a sudden increase in the sliding speed is followed by a rapid decrease.Generally,the sliding speed is not fast,and sometimes,no sliding occurs.There are obvious diff erences from the currently used sliding speed functions,such as the Haskell function,bell-shaped function,exponential function,and triangular function.To determine the fault sliding speed using the Doppler eff ect,only the earthquake records and locations of the epicenter and receivers are required,instead of using unknown crust parameters.In short,the proposed calculation method has clear physical meaning,and the required parameters are easier to obtain.