采用新颖的一步共沉淀法合成富锂锰基Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2正极材料。通过X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学测试对合成材料的晶体结构、形貌及电化学性能进行了测试和表征。结果表明,所制备Li_(1...采用新颖的一步共沉淀法合成富锂锰基Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2正极材料。通过X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学测试对合成材料的晶体结构、形貌及电化学性能进行了测试和表征。结果表明,所制备Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2正极材料具有较好的多面体形貌,材料颗粒粒径小于500 nm。在2.0~4.8 V充放电区间内,在18 m A/g进行充放电,所制备材料的首次放电比容量达到209.0 m Ah/g,循环50次后容量保持率为87.7%。展开更多
以碳酸锂、五氧化二钒和硝酸铜为原料,通过球磨混合结合高温固相法成功制备锂离子电池新型负极材料LiCuVO_4。热重分析法(TG)、X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学测试方法对合成材料进行了研究。结果表明所制...以碳酸锂、五氧化二钒和硝酸铜为原料,通过球磨混合结合高温固相法成功制备锂离子电池新型负极材料LiCuVO_4。热重分析法(TG)、X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学测试方法对合成材料进行了研究。结果表明所制备LiCuVO_4负极材料主要由微米尺寸的块状颗粒组成。在0.01~3.0 V充放电区间内,在50 m A/g进行充放电,所制备的材料首次充电比容量达到425.2 m Ah/g,循环50次后充电比容量仍保持在370.8 m Ah/g。在1 A/g电流密度下,循环50次后,充电比容量仍高达288.6 m Ah/g。展开更多
文摘采用新颖的一步共沉淀法合成富锂锰基Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2正极材料。通过X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学测试对合成材料的晶体结构、形貌及电化学性能进行了测试和表征。结果表明,所制备Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2正极材料具有较好的多面体形貌,材料颗粒粒径小于500 nm。在2.0~4.8 V充放电区间内,在18 m A/g进行充放电,所制备材料的首次放电比容量达到209.0 m Ah/g,循环50次后容量保持率为87.7%。
文摘以碳酸锂、五氧化二钒和硝酸铜为原料,通过球磨混合结合高温固相法成功制备锂离子电池新型负极材料LiCuVO_4。热重分析法(TG)、X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学测试方法对合成材料进行了研究。结果表明所制备LiCuVO_4负极材料主要由微米尺寸的块状颗粒组成。在0.01~3.0 V充放电区间内,在50 m A/g进行充放电,所制备的材料首次充电比容量达到425.2 m Ah/g,循环50次后充电比容量仍保持在370.8 m Ah/g。在1 A/g电流密度下,循环50次后,充电比容量仍高达288.6 m Ah/g。
文摘用共沉淀-机械球磨-高温煅烧法制备纳米三氧化二铝(Al_2O_3)包覆镍钴锰酸锂材料,研究材料在高电压充放电条件下的电化学性能。XRD、SEM、容量微分(d Q)/电压微分(d U)和电化学性能测试结果表明:在镍钴锰酸锂颗粒表面得到了均匀的纳米级Al_2O_3包覆层,并提高正极材料的电化学性能。以0.5 C在3.0-4.6 V循环,Al_2O_3包覆量为0.5%材料第50次循环的放电比容量由未包覆材料的155.3 m Ah/g上升到172.7 m Ah/g。包覆处理可提升正极的热稳定性和高电压高温持续充电的时间,从而提高电池的高温安全性能。