Constructing step-scheme(S-scheme)heterojunctions has been confirmed as a promising strategy for enhancing the photocatalytic activity of composite materials.In this work,a series of sulfur-doped g-C3N4(SCN)/TiO2 S-sc...Constructing step-scheme(S-scheme)heterojunctions has been confirmed as a promising strategy for enhancing the photocatalytic activity of composite materials.In this work,a series of sulfur-doped g-C3N4(SCN)/TiO2 S-scheme photocatalysts were synthesized using electrospinning and calcination methods.The as-prepared SCN/TiO2 composites showed superior photocatalytic performance than pure TiO2 and SCN in the photocatalytic degradation of Congo Red(CR)aqueous solution.The significant enhancement in photocatalytic activity benefited not only from the 1D well-distributed nanostructure,but also from the S-scheme heterojunction.Furthermore,the XPS analyses and DFT calculations demonstrated that electrons were transferred from SCN to TiO2 across the interface of the SCN/TiO2 composites.The built-in electric field,band edge bending,and Coulomb interaction synergistically facilitated the recombination of relatively useless electrons and holes in hybrid when the interface was irradiated by simulated solar light.Therefore,the remaining electrons and holes with higher reducibility and oxidizability endowed the composite with supreme redox ability.These results were adequately verified by radical trapping experiments,ESR tests,and in situ XPS analyses,suggesting that the electron immigration in the photocatalyst followed the S-scheme heterojunction mechanism.This work can enrich our knowledge of the design and fabrication of novel S-scheme heterojunction photocatalysts and provide a promising strategy for solving environmental pollution in the future.展开更多
Graphitic carbon nitride(g-C_(3)N_(4))has emerged as a remarkably promising photocatalyst for addressing environmental and energy issues;however,it exhibits only moderate photocatalytic activity because of its low spe...Graphitic carbon nitride(g-C_(3)N_(4))has emerged as a remarkably promising photocatalyst for addressing environmental and energy issues;however,it exhibits only moderate photocatalytic activity because of its low specific surface area and high recombination of carriers.Preparation of crystalline g-C_(3)N_(4) by the molten salt method has proven to be an effective method to improve the photocatalytic activity.However,crystalline g-C_(3)N_(4) prepared by the conventional molten salt method exhibits a less regular morphology.Herein,highly crystalline g-C_(3)N_(4) hollow spheres(CCNHS)were successfully prepared by the molten salt method using cyanuric acid-melamine as a precursor.The higher crystallization of the CCNHS samples not only repaired the structural defects at the surface of the CCNHS samples but also established a built-in electric field between heptazine-based g-C_(3)N_(4) and triazine-based g-C_(3)N_(4).The hollow structure improved the level of light energy utilization and increased the number of active sites for photocatalytic reactions.Because of the above characteristics,the as-prepared CCNHS samples simultaneously realized photocatalytic hydrogen evolution with the degradation of the plasticizer bisphenol A.This research offers a new perspective on the structural optimization of supramolecular self-assembly.展开更多
The solar-driven catalytic conversion of CO2 to useful chemical fuels is regarded as an environmentally friendly approach to reduce the consumption of fossil fuels and mitigate the greenhouse effect.However,it is high...The solar-driven catalytic conversion of CO2 to useful chemical fuels is regarded as an environmentally friendly approach to reduce the consumption of fossil fuels and mitigate the greenhouse effect.However,it is highly intriguing and challenging to promote the selectivity and efficiency of visible-light-responsive photocatalysts that favor the adsorption of CO2 in photoreduction processes.In this work,three-dimensional hierarchical Cd0.8Zn0.2S flowers(C8Z2S-F)with ultrathin petals were successfully synthesized through an in-situ self-assembly growth process using sodium citrate as a morphology director.The flower-like Cd0.8Zn0.2S solid solution exhibited remarkable photocatalytic performance in the reduction of CO2,generating CO up to 41.4μmol g^−1 under visible-light illumination for 3 h;this was nearly three times greater than that of Cd0.8Zn0.2S nanoparticles(C8Z2S-NP)(14.7μmol g^−1).Particularly,a comparably high selectivity of 89.9%for the conversion of CO2 to CO,with a turnover number of 39.6,was obtained from the solar-driven C8Z2S-F system in the absence of any co-catalyst or sacrificial agent.Terahertz time-domain spectroscopy indicated that the introduction of flower structures enhanced the light-harvesting capacity of C8Z2S-F.The in situ diffuse reflectance infrared Fourier transform spectroscopy unveiled the existence of surface-adsorbed species and the conversion of photoreduction intermediates during the photocatalytic process.Empirical characterizations and predictions of the photocatalytic mechanism demonstrated that the flower-like Cd0.8Zn0.2S solid solution possessed desirable CO2 adsorption properties and an enhanced charge-transfer capability,thus providing a highly effective photocatalytic reduction of CO2.展开更多
An environmentally-friendly hybrid coating on AZ31 magnesium alloy substrates was reported.The synergic effect was studied on Mg−Al-layered double hydroxide Mg−Al LDH/Mg(OH)2-coated AZ31 magnesium alloy via an in-situ...An environmentally-friendly hybrid coating on AZ31 magnesium alloy substrates was reported.The synergic effect was studied on Mg−Al-layered double hydroxide Mg−Al LDH/Mg(OH)2-coated AZ31 magnesium alloy via an in-situ steam coating process and a subsequent combined surface modification of bis-[triethoxysilylpropyl]tetrasulfide(BTESPT)silane and Ce(NO3)3.The microstructure and composition characteristics of the hybrid coatings were investigated by means of X-ray diffraction(XRD),scanning electronic microscopy(SEM),Fourier transform infrared spectrophotometry(FT-IR)and X-ray photoelectron spectroscopy(XPS).The corrosion resistance of the coated samples was evaluated by potentiodynamic polarization(PDP),electrochemical impedance spectrum(EIS)and hydrogen evolution rate during immersion in 3.5 wt.%NaCl solution.The results show an improved corrosion resistance of the alloy in the presence of BTESPT silane and Ce(NO3)3.This is most likely due to the synergistic effect of steam coating and silane coating to enhance the barrier properties of hybrid coating.In addition,the formation mechanism and anti-corrosion mechanism of coatings were discussed.展开更多
Single-atom Pt catalysts are designed to promote efficient atom utilization,whereas effective decrease of Pt loading and improvement of photocatalytic activity in monoatomic Pt-deposited systems is still ongoing.Atomi...Single-atom Pt catalysts are designed to promote efficient atom utilization,whereas effective decrease of Pt loading and improvement of photocatalytic activity in monoatomic Pt-deposited systems is still ongoing.Atomically dispersed metal species in crystalline carbon nitride are still challenging owing to their high crystallization and structural stability.In this study,we developed a novel single-atomic Pt-Cu catalyst for reducing noble metal loading by combining Pt with earth-abundant Cu atoms and enhancing photocatalytic CO_(2)reduction.N-vacancy-rich crystalline carbon nitride was used as a fine-tuning ligand for isolated Pt-Cu atom dispersion based on its accessible functional N vacancies as the seeded centers.The synthesized dimetal Pt-Cu atoms on crystalline carbon nitride(Pt Cu-cr CN)exhibited high selectivity and activity for CO_(2)conversion without the addition of any cocatalyst or sacrificial agent.In particular,we demonstrated that the diatomic Pt-Cu exhibited high mass activity with only 0.32 wt% Pt loading and showed excellent photocatalytic selectivity toward CH_(4)generation.The mechanism of CO_(2)photoreduction for Pt Cu-cr CN was proposed based on the observations and analysis of aberration-corrected high-angle annular dark-field scanning transmission electron microscopy images,in situ irradiated X-ray photoelectron spectroscopy,and in situ diffuse reflectance infrared Fourier transform spectroscopy.The findings of this work provide insights for abrogating specific bifunctional atomic metal sites in noble metal-based photocatalysts by reducing noble metal loading and maximizing their effective mass activity.展开更多
The AM50,AM50-0.1 Ca,AM50-0.3 Ca and AM50-0.5 Ca(wt.%) alloys were hot-rolled and their mechanical properties were determined for the purpose of investigating the effect of trace Ca addition on the texture and stretch...The AM50,AM50-0.1 Ca,AM50-0.3 Ca and AM50-0.5 Ca(wt.%) alloys were hot-rolled and their mechanical properties were determined for the purpose of investigating the effect of trace Ca addition on the texture and stretch formability of AM50 alloy.The results show that the addition of trace Ca can effectively modify the basal texture,which is characterized by the split of basal poles deviated from the normal direction(ND) after the hot rolling,while a broad spread of the basal planes toward the transverse direction(TD) after the annealing.Such change of the basal texture is related to the prior formation of massive compression twins and the decrease of the c/a ratio.Erichsen value increases from 2.25 to 4.21 mm with the increase of Ca content.The enhancement of stretch formability is ascribed to the weakened basal texture,which results in the increase of n-value and the decrease of r-value.展开更多
Photocatalytic H2 production from water splitting is an effective method to solve energy crisis and environmental pollution simultaneously.Herein,carbon@CdS composite hollow spheres(C@CdS-HS)are fabricated via a facil...Photocatalytic H2 production from water splitting is an effective method to solve energy crisis and environmental pollution simultaneously.Herein,carbon@CdS composite hollow spheres(C@CdS-HS)are fabricated via a facile hydrothermal method using porous carbon hollow spheres(C-HS)as the template.The C@CdS-HS shows an excellent photocatalytic H2-generation rate of 20.9 mmol h^(−1) g^(−1)(apparent quantum efficiency of 15.3%at 420 nm),with 1.0 wt%Pt as a cocatalyst under simulated sunlight irradiation;this rate is 69.7,13.9,and 3.9 times higher than that obtained with pure CdS hollow spheres(CdS-HS),C@CdS-HS,and CdS-HS/Pt,respectively.The enhanced photocatalytic H_(2)-evolution activity of C@CdS-HS/Pt is due to the synergistic effect of C and Pt as the bi-cocatalyst.The C-HS serves not only as an active site provider but also as an electron transporter and reservoir.Moreover,C-HS has a strong photothermal effect that is induced by near infrared light,which kinetically accelerates the H_(2)-production reaction.Additionally,the underlying charge transfer pathway and process from CdS to C−HS is revealed.This work highlights the potential application of C-HS-based nanocomposites in solar-to-chemical energy conversion.展开更多
Heterogeneous photocatalysis,an advanced oxidation process,has garnered extensive attention in the field of environmental remediation because it involves the direct utilization of solar energy for the removal of numer...Heterogeneous photocatalysis,an advanced oxidation process,has garnered extensive attention in the field of environmental remediation because it involves the direct utilization of solar energy for the removal of numerous pollutants.However,the application of heterogeneous photocatalysis in environmental remediation has not achieved the expected consequences due to enormous challenges such as low photocatalytic efficiencies and high costs of heterogeneous photocatalysts in large-scale practical applications.Furthermore,pollutants in the natural environment,including water,air,and solid phases,are diverse and complex.Therefore,extensive efforts should be made to better understand and apply heterogeneous photocatalysis for environmental remediation.Herein,the fundamentals of heterogeneous photocatalysis for environmental remediation are introduced.Then,potential semiconductors and their modification strategies for environmental photocatalysis are systematically presented.Finally,conclusions and prospects are briefly summarized,and the direction for the future development of environmental photocatalysis is explored.This review may provide reference directions toward understanding,researching,and designing photocatalytic remediation systems for various environmental pollutants.展开更多
Single-crystal Ni-rich cathode material LiNi0.88Co0.09Al0.03O2(SC) was synthesized by a high-temperature solid-state calcination method. Physicochemical properties of primary and delithiated SC samples were investigat...Single-crystal Ni-rich cathode material LiNi0.88Co0.09Al0.03O2(SC) was synthesized by a high-temperature solid-state calcination method. Physicochemical properties of primary and delithiated SC samples were investigated by X-ray diffractometry, X-ray photoelectron spectroscopy, and transmission electron microscopy. Electrochemical performance was characterized by long-term cycling, cyclic voltammetry, and in-situ impedance spectroscopy. The results indicated that high temperature rendered layered oxides to lose lithium/oxygen in the interior and exterior, and induced cationic disordering. Besides, the solid-phase synthesis process promoted phase transformation for electrode materials, causing the coexisting multi-phase in a single particle. High temperature can foster the growth of single particles, but it caused unstable structure of layered phase.展开更多
The local inhomogeneity of the stir zone in friction stir welded face-centered cubic metal was investigated,which has multiple activated slip systems during plastic deformation,by selecting commercial AA1050 aluminum ...The local inhomogeneity of the stir zone in friction stir welded face-centered cubic metal was investigated,which has multiple activated slip systems during plastic deformation,by selecting commercial AA1050 aluminum alloy as an ideal experimental material.The local inhomogeneity was evaluated by uniaxial tensile tests using small samples with a 1 mm gauge length.The corresponding microstructural parameters such as grain size,misorientation angle distribution,and micro-texture,were quantified by the backscattered electron diffraction technique.A comprehensive model was used to reveal the microstructure−mechanical property relationship.The experimental results showed that the uniaxial tensile property changes significantly across the weld.The maximum ultimate tensile strength(UTS)occurred in the center of the stir zone,which was 99.0 MPa.The weakest regions were located at the two sides of the stir zone.The largest difference value in UTS reached 14.9 MPa,accounting for 15%of the maximum UTS.The analysis on the structure−mechanical property relationship suggests that the micro-texture change with the location formed during the rotational material flow is the main reason for the local inhomogeneity.展开更多
H2 is an important energy carrier for replacing fossil fuel in the future due to its high energy density and environmental friendliness.As a sustainable H2-generation method,photocatalytic H2 production by water split...H2 is an important energy carrier for replacing fossil fuel in the future due to its high energy density and environmental friendliness.As a sustainable H2-generation method,photocatalytic H2 production by water splitting has attracted much interest.Here,oil-soluble ZnxCd1-xS quantum dot(ZCS QD)with a uniform particle size distribution were prepared by a hot-injection method.However,no photocatalytic H2-production activity was observed for the oil-soluble ZCS QD due to its hydrophobicity.Thus,the oil-soluble ZCS QD was converted into a water-soluble ZCS QD by a ligand-exchange method.The water-soluble ZCS QD exhibited excellent photocatalytic H2-production performance in the presence of glycerin and Ni^2+,with an apparent quantum efficiency of 15.9%under irradiation of 420 nm light.Further,the photocatalytic H2-generation activity of the ZCS QD was~10.7 times higher than that of the ZnxCd1-xS relative samples prepared by the conventional co-precipitation method.This work will inspire the design and fabrication of other semiconductor QD photocatalysts because QD exhibits excellent separation efficiency for photogenerated electron-hole pairs due to its small crystallite size.展开更多
Bi2WO6 is a typical visible-light-responsive semiconductor photocatalyst with a layered structure.However,the relatively large bandgap(2.6–2.8 eV)and quick recombination of photo-generated carriers result in its low ...Bi2WO6 is a typical visible-light-responsive semiconductor photocatalyst with a layered structure.However,the relatively large bandgap(2.6–2.8 eV)and quick recombination of photo-generated carriers result in its low quantum efficiency.In this paper,Bi-nanospheres-modified flower-like Bi2WO6 was successfully prepared by solvothermal treatment of Bi2WO6 powders in Bi(NO3)3 solution using ethylene glycol as reductant.The photoreactivity of this photocatalyst was evaluated by the oxidation of NO in a continuous-flow reactor under irradiation by a visible LED lamp(λ>400 nm).It was found that both Bi nanospheres and flower-like Bi2WO6 precursor exhibit very poor photocatalytic activity with NO removal rates of only 7.7%and 8.6%,respectively.The photoreactivity of Bi/Bi2WO6 was found to steadily increase from 12.3%to 53.1%with increase in the amount of Bi nanospheres from 0 to 10 wt%.However,with further increase in the loading amount of Bi nanospheres,the photoreactivity of Bi/Bi2WO6 hybridized photocatalyst begins to decrease,possibly due to the light filtering by the Bi nanospheres.The enhanced visible photoreactivity of Bi/Bi2WO6 towards NO abatement was attributed to surface plasmon resonance driven interfacial charge separation.The excellent stability of Bi/Bi2WO6 hybridized photocatalyst towards NO oxidation demonstrates its potential for applications such as air purification.展开更多
The fabrication of S-scheme heterojunctions has received considerable attention as an effective approach to promote the separation and migration of photoexcited electron/hole pairs and retain strong redox abilities.He...The fabrication of S-scheme heterojunctions has received considerable attention as an effective approach to promote the separation and migration of photoexcited electron/hole pairs and retain strong redox abilities.Herein,an imine-based porous covalent organic framework(COF-LZU1)is integrated with controllably fabricated Cd S hollow cubes,resulting in the formation of an S-scheme heterojunction.When the COF content reaches 1.5 wt%,the COF/Cd S heterostructure(1.5%COF/Cd S)achieves the highest hydrogen generation rate of 8670μmol·h^(-1)·g^(-1),which is approximately 2.1 times higher than that of pure Cd S.The apparent quantum efficiency(AQE)of 1.5%COF/Cd S is approximately 8.9%at 420 nm.Further systematic analysis shows that the intimate contact interface and suitable energy band structures between Cd S and COF can induce the formation of an internal electric field at the heterojunction interface,which can effectively drive the spatial separation of photoexcited charge carriers and simultaneously maintain a strong redox ability,thus enhancing the photocatalytic H_(2) evolution performance.展开更多
Modification of nickel sulfide cocatalysts is considered to be a promising approach for efficient enhancement of the photocatalytic hydrogen production performance of g-C3N4.Providing more NiS cocatalyst to function a...Modification of nickel sulfide cocatalysts is considered to be a promising approach for efficient enhancement of the photocatalytic hydrogen production performance of g-C3N4.Providing more NiS cocatalyst to function as active sites of g-C3N4 is still highly desirable.To realize this goal,in this work,a facile sulfur-mediated photodeposition approach was developed.Specifically,photogenerated electrons excited by visible light reduce the S molecules absorbed on g-C3N4 surface to S^2‒,and subsequently NiS cocatalyst is formed in situ on the g-C3N4 surface by a combination of Ni2+and S2‒due to their small solubility product constant(Ksp=3.2×10^‒19).This approach has several advantages.The NiS cocatalyst is clearly in situ deposited on the photogenerated electron transfer sites of g-C3N4,and thus provides more active sites for H2 production.In addition,this method utilizes solar energy with mild reaction conditions at room temperature.Consequently,the synthesized NiS/g-C3N4 photocatalyst achieves excellent hydrogen generation performance with the performance of the optimal sample(244μmol h^‒1 g^‒1)close to that of 1 wt%Pt/g-C3N4(316μmol h^‒1 g^‒1,a well-known excellent photocatalyst).More importantly,the present sulfur-mediated photodeposition route is versatile and facile and can be used to deposit various metal sulfides such as CoSx,CuSx and AgSx on the g-C3N4 surface,and all the resulting metal sulfide-modified g-C3N4 photocatalysts exhibit improved H2-production performance.Our study offers a novel insight for the synthesis of high-efficiency photocatalysts.展开更多
Hierarchically structured nanomaterials have attracted much attention owing to their unique properties.In this study,TiO2 nanofibers assembled from nanosheets(TiO2-NFs-NSs)were fabricated through electrospinning techn...Hierarchically structured nanomaterials have attracted much attention owing to their unique properties.In this study,TiO2 nanofibers assembled from nanosheets(TiO2-NFs-NSs)were fabricated through electrospinning technique,which was followed by hydrothermal treatment in NaOH solution.The effect of hydrothermal reaction time(0-3 h)on the structure and properties of TiO2 nanofibers(TiO2-NFs)was systematically studied,and TiO2-NFs was evaluated in terms of the photocatalytic activity toward photocatalytic oxidation of acetone and the photoelectric conversion efficiency of dye-sensitized solar cells.It was found that(1)hydrothermal treatment of TiO2-NFs in NaOH solution followed by acid washing and calcination results in the formation of TiO2-NFs-NSs;(2)upon extending the hydrothermal reaction time from 0 h to 3 h,the BET surface area of TiO2-NFs-NSs(T3.0 sample)increases 3.8 times(from 28 to 106 m2 g^-1),while the pore volume increases 6.0 times(from 0.09 to 0.54 cm3 g^-1);(3)when compared with those of pristine TiO2-NFs(T0 sample),the photoreactivity of the optimized TiO2-NFs-NSs toward acetone oxidation increases 3.1 times and the photoelectric conversion efficiency increases 2.3 times.The enhanced photoreactivity of TiO2-NFs-NSs is attributed to the enlarged BET surface area and increased pore volume,which facilitate the adsorption of substrate and penetration of gas,and the unique hollow structure of TiO2-NFs-NSs,which facilitates light harvesting through multiple optical reflections between the TiO2 nanosheets.展开更多
Photocatalysis has become a focal point in research as a clean and sustainable technology with the potential to solve environmental problems and energy crises.The loading of noble-metal co-catalysts can substantially ...Photocatalysis has become a focal point in research as a clean and sustainable technology with the potential to solve environmental problems and energy crises.The loading of noble-metal co-catalysts can substantially improve the photocatalytic efficiency of semiconductors.Because the high cost and scarcity of noble metals markedly limit their large-scale applications,finding a noble-metal-alternative co-catalyst is crucial.MXene,a novel 2D transition metal material,has attracted considerable attention as a promising substitute for noble metal co-catalysts owing to its cost-efficiency,unique 2D layered structure,and excellent electrical,optical,and thermodynamic properties.This review focuses on the latest advancements in research on MXenes as co-catalysts in relatively popular photocatalytic applications(hydrogen production,CO2 reduction,nitrogen fixation,and organic pollutant oxidation).The synthesis methods and photocatalytic mechanisms of MXenes as co-catalysts are also summarized according to the type of MXene-based material.Finally,the crucial opportunities and challenges in the prospective development of MXene-based photocatalysts are outlined.We emphasize that modern techniques should be used to demonstrate the effects of MXenes on photocatalysis and that the photocatalytic activity of MXene-based photocatalysts can be further improved using defective engineering and recent phenomena such as the localized surface plasmon resonance effect and single-atom catalysis.展开更多
The investigation of silicothermic reduction of CaO·MgO was carried out using a self-developed thermogravimetric analysis(TGA)instrument under vacuum and high temperature conditions.The TG data of pellets prepare...The investigation of silicothermic reduction of CaO·MgO was carried out using a self-developed thermogravimetric analysis(TGA)instrument under vacuum and high temperature conditions.The TG data of pellets prepared with calcined dolomite,ferrosilicon and fluorite were determined at the heating rates of 1.5,2.0,2.5 and 3.0℃/min in 5 Pa vacuum at 300−1400℃,respectively.Model-free analysis and model-based analysis were applied for simulating the kinetic mechanism.By analyzing the characteristics of the initial and final reaction temperatures of TG curve,ratio of half-width of derivative TG curve and kinetic parameters,a conclusion was made that the most probable mechanism function is the first order formal chemical reaction with activation energy of 233.42 kJ/mol and pre-exponential factor of 5.14×1010 s−1.This study provides the basic data of dynamics of silicothermic magnesium production under vacuum conditions.展开更多
Electrochemical CO2 reduction is a promising strategy for the utilization of CO2 and intermittent excess electricity.Cu is the only single metal catalyst that can electrochemically convert CO2 into multicarbon product...Electrochemical CO2 reduction is a promising strategy for the utilization of CO2 and intermittent excess electricity.Cu is the only single metal catalyst that can electrochemically convert CO2 into multicarbon products.However,Cu exhibits an unfavorable activity and selectivity for the generation of C2 products because of the insufficient amount of CO*provided for the C‐C coupling.Based on the strong CO2 adsorption and ultrafast reaction kinetics of CO*formation on Pd,an intimate CuPd(100)interface was designed to lower the intermediate reaction barriers and improve the efficiency of C2 product formation.Density functional theory(DFT)calculations showed that the CuPd(100)interface enhanced the CO2 adsorption and decreased the CO2*hydrogenation energy barrier,which was beneficial for the C‐C coupling.The potential‐determining step(PDS)barrier of CO2 to C2 products on the CuPd(100)interface was 0.61 eV,which was lower than that on Cu(100)(0.72 eV).Encouraged by the DFT calculation results,the CuPd(100)interface catalyst was prepared by a facile chemical solution method and characterized by transmission electron microscopy.CO2 temperature‐programmed desorption and gas sensor experiments further confirmed the enhancement of the CO2 adsorption and CO2*hydrogenation ability of the CuPd(100)interface catalyst.Specifically,the obtained CuPd(100)interface catalyst exhibited a C2 Faradaic efficiency of 50.3%±1.2%at‒1.4 VRHE in 0.1 M KHCO3,which was 2.1 times higher than that of the Cu catalyst(23.6%±1.5%).This study provides the basis for the rational design of Cu‐based electrocatalysts for the generation of multicarbon products by fine‐tuning the intermediate reaction barriers.展开更多
The active site amount of photocatalysts,being the key factors in photocatalytic reactions,directly affects the photocatalytic performance of the photocatalyst.Pristine graphitic carbon nitride(g‐C_(3)N_(4))exhibits ...The active site amount of photocatalysts,being the key factors in photocatalytic reactions,directly affects the photocatalytic performance of the photocatalyst.Pristine graphitic carbon nitride(g‐C_(3)N_(4))exhibits moderate photocatalytic activity due to insufficient active sites.In this study,cyano‐modified porous g‐C_(3)N_(4)nanosheets(MCN‐0.5)were synthesized through molecular self‐assembly and alkali‐assisted strategies.The cyano group acted as the active site of the photocatalytic reaction,because the good electron‐withdrawing property of the cyano group promoted carrier separation.Benefiting from the effect of the active sites,MCN‐0.5 exhibited significantly enhanced photocatalytic activity for CO2 reduction under visible light irradiation.Notably,the photocatalytic activity of MCN‐0.5 was significantly reduced when the cyano groups were removed by hydrochloric acid(HCl)treatment,further verifying the role of cyano groups as active sites.The photoreduction of Pt nanoparticles provided an intuitive indication that the introduction of cyano groups provided more active sites for the photocatalytic reaction.Furthermore,the controlled experiments showed that g‐C_(3)N_(4)grafted with cyano groups using melamine as the precursor exhibited enhanced photocatalytic activity,which proved the versatility of the strategy for enhancing the activity of g‐C_(3)N_(4)via cyano group modification.In situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations were used to investigate the mechanism of enhanced photocatalytic activity for CO2 reduction by cyano‐modified g‐C_(3)N_(4).This work provides a promising route for promoting efficient solar energy conversion by designing active sites in photocatalysts.展开更多
文摘Constructing step-scheme(S-scheme)heterojunctions has been confirmed as a promising strategy for enhancing the photocatalytic activity of composite materials.In this work,a series of sulfur-doped g-C3N4(SCN)/TiO2 S-scheme photocatalysts were synthesized using electrospinning and calcination methods.The as-prepared SCN/TiO2 composites showed superior photocatalytic performance than pure TiO2 and SCN in the photocatalytic degradation of Congo Red(CR)aqueous solution.The significant enhancement in photocatalytic activity benefited not only from the 1D well-distributed nanostructure,but also from the S-scheme heterojunction.Furthermore,the XPS analyses and DFT calculations demonstrated that electrons were transferred from SCN to TiO2 across the interface of the SCN/TiO2 composites.The built-in electric field,band edge bending,and Coulomb interaction synergistically facilitated the recombination of relatively useless electrons and holes in hybrid when the interface was irradiated by simulated solar light.Therefore,the remaining electrons and holes with higher reducibility and oxidizability endowed the composite with supreme redox ability.These results were adequately verified by radical trapping experiments,ESR tests,and in situ XPS analyses,suggesting that the electron immigration in the photocatalyst followed the S-scheme heterojunction mechanism.This work can enrich our knowledge of the design and fabrication of novel S-scheme heterojunction photocatalysts and provide a promising strategy for solving environmental pollution in the future.
文摘Graphitic carbon nitride(g-C_(3)N_(4))has emerged as a remarkably promising photocatalyst for addressing environmental and energy issues;however,it exhibits only moderate photocatalytic activity because of its low specific surface area and high recombination of carriers.Preparation of crystalline g-C_(3)N_(4) by the molten salt method has proven to be an effective method to improve the photocatalytic activity.However,crystalline g-C_(3)N_(4) prepared by the conventional molten salt method exhibits a less regular morphology.Herein,highly crystalline g-C_(3)N_(4) hollow spheres(CCNHS)were successfully prepared by the molten salt method using cyanuric acid-melamine as a precursor.The higher crystallization of the CCNHS samples not only repaired the structural defects at the surface of the CCNHS samples but also established a built-in electric field between heptazine-based g-C_(3)N_(4) and triazine-based g-C_(3)N_(4).The hollow structure improved the level of light energy utilization and increased the number of active sites for photocatalytic reactions.Because of the above characteristics,the as-prepared CCNHS samples simultaneously realized photocatalytic hydrogen evolution with the degradation of the plasticizer bisphenol A.This research offers a new perspective on the structural optimization of supramolecular self-assembly.
文摘The solar-driven catalytic conversion of CO2 to useful chemical fuels is regarded as an environmentally friendly approach to reduce the consumption of fossil fuels and mitigate the greenhouse effect.However,it is highly intriguing and challenging to promote the selectivity and efficiency of visible-light-responsive photocatalysts that favor the adsorption of CO2 in photoreduction processes.In this work,three-dimensional hierarchical Cd0.8Zn0.2S flowers(C8Z2S-F)with ultrathin petals were successfully synthesized through an in-situ self-assembly growth process using sodium citrate as a morphology director.The flower-like Cd0.8Zn0.2S solid solution exhibited remarkable photocatalytic performance in the reduction of CO2,generating CO up to 41.4μmol g^−1 under visible-light illumination for 3 h;this was nearly three times greater than that of Cd0.8Zn0.2S nanoparticles(C8Z2S-NP)(14.7μmol g^−1).Particularly,a comparably high selectivity of 89.9%for the conversion of CO2 to CO,with a turnover number of 39.6,was obtained from the solar-driven C8Z2S-F system in the absence of any co-catalyst or sacrificial agent.Terahertz time-domain spectroscopy indicated that the introduction of flower structures enhanced the light-harvesting capacity of C8Z2S-F.The in situ diffuse reflectance infrared Fourier transform spectroscopy unveiled the existence of surface-adsorbed species and the conversion of photoreduction intermediates during the photocatalytic process.Empirical characterizations and predictions of the photocatalytic mechanism demonstrated that the flower-like Cd0.8Zn0.2S solid solution possessed desirable CO2 adsorption properties and an enhanced charge-transfer capability,thus providing a highly effective photocatalytic reduction of CO2.
基金Projects(51601108,21676285,51571134)supported by the National Natural Science Foundation of ChinaProject(2017RCJJ015)supported by Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents,ChinaProject(2014TDJH104)supported by the Shandong University of Science and Technology Research Fund,China。
文摘An environmentally-friendly hybrid coating on AZ31 magnesium alloy substrates was reported.The synergic effect was studied on Mg−Al-layered double hydroxide Mg−Al LDH/Mg(OH)2-coated AZ31 magnesium alloy via an in-situ steam coating process and a subsequent combined surface modification of bis-[triethoxysilylpropyl]tetrasulfide(BTESPT)silane and Ce(NO3)3.The microstructure and composition characteristics of the hybrid coatings were investigated by means of X-ray diffraction(XRD),scanning electronic microscopy(SEM),Fourier transform infrared spectrophotometry(FT-IR)and X-ray photoelectron spectroscopy(XPS).The corrosion resistance of the coated samples was evaluated by potentiodynamic polarization(PDP),electrochemical impedance spectrum(EIS)and hydrogen evolution rate during immersion in 3.5 wt.%NaCl solution.The results show an improved corrosion resistance of the alloy in the presence of BTESPT silane and Ce(NO3)3.This is most likely due to the synergistic effect of steam coating and silane coating to enhance the barrier properties of hybrid coating.In addition,the formation mechanism and anti-corrosion mechanism of coatings were discussed.
文摘Single-atom Pt catalysts are designed to promote efficient atom utilization,whereas effective decrease of Pt loading and improvement of photocatalytic activity in monoatomic Pt-deposited systems is still ongoing.Atomically dispersed metal species in crystalline carbon nitride are still challenging owing to their high crystallization and structural stability.In this study,we developed a novel single-atomic Pt-Cu catalyst for reducing noble metal loading by combining Pt with earth-abundant Cu atoms and enhancing photocatalytic CO_(2)reduction.N-vacancy-rich crystalline carbon nitride was used as a fine-tuning ligand for isolated Pt-Cu atom dispersion based on its accessible functional N vacancies as the seeded centers.The synthesized dimetal Pt-Cu atoms on crystalline carbon nitride(Pt Cu-cr CN)exhibited high selectivity and activity for CO_(2)conversion without the addition of any cocatalyst or sacrificial agent.In particular,we demonstrated that the diatomic Pt-Cu exhibited high mass activity with only 0.32 wt% Pt loading and showed excellent photocatalytic selectivity toward CH_(4)generation.The mechanism of CO_(2)photoreduction for Pt Cu-cr CN was proposed based on the observations and analysis of aberration-corrected high-angle annular dark-field scanning transmission electron microscopy images,in situ irradiated X-ray photoelectron spectroscopy,and in situ diffuse reflectance infrared Fourier transform spectroscopy.The findings of this work provide insights for abrogating specific bifunctional atomic metal sites in noble metal-based photocatalysts by reducing noble metal loading and maximizing their effective mass activity.
基金Projects(51801186,51974281)supported by the National Natural Science Foundation of ChinaProject(SKLSP201814)supported by the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China
文摘The AM50,AM50-0.1 Ca,AM50-0.3 Ca and AM50-0.5 Ca(wt.%) alloys were hot-rolled and their mechanical properties were determined for the purpose of investigating the effect of trace Ca addition on the texture and stretch formability of AM50 alloy.The results show that the addition of trace Ca can effectively modify the basal texture,which is characterized by the split of basal poles deviated from the normal direction(ND) after the hot rolling,while a broad spread of the basal planes toward the transverse direction(TD) after the annealing.Such change of the basal texture is related to the prior formation of massive compression twins and the decrease of the c/a ratio.Erichsen value increases from 2.25 to 4.21 mm with the increase of Ca content.The enhancement of stretch formability is ascribed to the weakened basal texture,which results in the increase of n-value and the decrease of r-value.
文摘Photocatalytic H2 production from water splitting is an effective method to solve energy crisis and environmental pollution simultaneously.Herein,carbon@CdS composite hollow spheres(C@CdS-HS)are fabricated via a facile hydrothermal method using porous carbon hollow spheres(C-HS)as the template.The C@CdS-HS shows an excellent photocatalytic H2-generation rate of 20.9 mmol h^(−1) g^(−1)(apparent quantum efficiency of 15.3%at 420 nm),with 1.0 wt%Pt as a cocatalyst under simulated sunlight irradiation;this rate is 69.7,13.9,and 3.9 times higher than that obtained with pure CdS hollow spheres(CdS-HS),C@CdS-HS,and CdS-HS/Pt,respectively.The enhanced photocatalytic H_(2)-evolution activity of C@CdS-HS/Pt is due to the synergistic effect of C and Pt as the bi-cocatalyst.The C-HS serves not only as an active site provider but also as an electron transporter and reservoir.Moreover,C-HS has a strong photothermal effect that is induced by near infrared light,which kinetically accelerates the H_(2)-production reaction.Additionally,the underlying charge transfer pathway and process from CdS to C−HS is revealed.This work highlights the potential application of C-HS-based nanocomposites in solar-to-chemical energy conversion.
文摘Heterogeneous photocatalysis,an advanced oxidation process,has garnered extensive attention in the field of environmental remediation because it involves the direct utilization of solar energy for the removal of numerous pollutants.However,the application of heterogeneous photocatalysis in environmental remediation has not achieved the expected consequences due to enormous challenges such as low photocatalytic efficiencies and high costs of heterogeneous photocatalysts in large-scale practical applications.Furthermore,pollutants in the natural environment,including water,air,and solid phases,are diverse and complex.Therefore,extensive efforts should be made to better understand and apply heterogeneous photocatalysis for environmental remediation.Herein,the fundamentals of heterogeneous photocatalysis for environmental remediation are introduced.Then,potential semiconductors and their modification strategies for environmental photocatalysis are systematically presented.Finally,conclusions and prospects are briefly summarized,and the direction for the future development of environmental photocatalysis is explored.This review may provide reference directions toward understanding,researching,and designing photocatalytic remediation systems for various environmental pollutants.
基金financial supports from the National Natural Science Foundation of China (51974368)the Fundamental Research Funds of the Central South University,China。
文摘Single-crystal Ni-rich cathode material LiNi0.88Co0.09Al0.03O2(SC) was synthesized by a high-temperature solid-state calcination method. Physicochemical properties of primary and delithiated SC samples were investigated by X-ray diffractometry, X-ray photoelectron spectroscopy, and transmission electron microscopy. Electrochemical performance was characterized by long-term cycling, cyclic voltammetry, and in-situ impedance spectroscopy. The results indicated that high temperature rendered layered oxides to lose lithium/oxygen in the interior and exterior, and induced cationic disordering. Besides, the solid-phase synthesis process promoted phase transformation for electrode materials, causing the coexisting multi-phase in a single particle. High temperature can foster the growth of single particles, but it caused unstable structure of layered phase.
基金Project(51905437)supported by the National Natural Science Foundation of ChinaProject(2019M653726)supported by the China Postdoctoral Science FoundationProject(3102019QD0407)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The local inhomogeneity of the stir zone in friction stir welded face-centered cubic metal was investigated,which has multiple activated slip systems during plastic deformation,by selecting commercial AA1050 aluminum alloy as an ideal experimental material.The local inhomogeneity was evaluated by uniaxial tensile tests using small samples with a 1 mm gauge length.The corresponding microstructural parameters such as grain size,misorientation angle distribution,and micro-texture,were quantified by the backscattered electron diffraction technique.A comprehensive model was used to reveal the microstructure−mechanical property relationship.The experimental results showed that the uniaxial tensile property changes significantly across the weld.The maximum ultimate tensile strength(UTS)occurred in the center of the stir zone,which was 99.0 MPa.The weakest regions were located at the two sides of the stir zone.The largest difference value in UTS reached 14.9 MPa,accounting for 15%of the maximum UTS.The analysis on the structure−mechanical property relationship suggests that the micro-texture change with the location formed during the rotational material flow is the main reason for the local inhomogeneity.
文摘H2 is an important energy carrier for replacing fossil fuel in the future due to its high energy density and environmental friendliness.As a sustainable H2-generation method,photocatalytic H2 production by water splitting has attracted much interest.Here,oil-soluble ZnxCd1-xS quantum dot(ZCS QD)with a uniform particle size distribution were prepared by a hot-injection method.However,no photocatalytic H2-production activity was observed for the oil-soluble ZCS QD due to its hydrophobicity.Thus,the oil-soluble ZCS QD was converted into a water-soluble ZCS QD by a ligand-exchange method.The water-soluble ZCS QD exhibited excellent photocatalytic H2-production performance in the presence of glycerin and Ni^2+,with an apparent quantum efficiency of 15.9%under irradiation of 420 nm light.Further,the photocatalytic H2-generation activity of the ZCS QD was~10.7 times higher than that of the ZnxCd1-xS relative samples prepared by the conventional co-precipitation method.This work will inspire the design and fabrication of other semiconductor QD photocatalysts because QD exhibits excellent separation efficiency for photogenerated electron-hole pairs due to its small crystallite size.
基金supported by the National Natural Science Foundation of China(51672312,21373275,51808080,21571192)the Fundamental Research Funds for the Central Univsrsity,South-Central University for Nationalities(CZT19006)+2 种基金the Natural Science Foundation Project of CQ CSTC(cstc2018jcyjA 3794)China "post-doctoral innovative talent support program"(BX20180056)China Postdoctoral Science Foundation(2018M643788XB)~~
文摘Bi2WO6 is a typical visible-light-responsive semiconductor photocatalyst with a layered structure.However,the relatively large bandgap(2.6–2.8 eV)and quick recombination of photo-generated carriers result in its low quantum efficiency.In this paper,Bi-nanospheres-modified flower-like Bi2WO6 was successfully prepared by solvothermal treatment of Bi2WO6 powders in Bi(NO3)3 solution using ethylene glycol as reductant.The photoreactivity of this photocatalyst was evaluated by the oxidation of NO in a continuous-flow reactor under irradiation by a visible LED lamp(λ>400 nm).It was found that both Bi nanospheres and flower-like Bi2WO6 precursor exhibit very poor photocatalytic activity with NO removal rates of only 7.7%and 8.6%,respectively.The photoreactivity of Bi/Bi2WO6 was found to steadily increase from 12.3%to 53.1%with increase in the amount of Bi nanospheres from 0 to 10 wt%.However,with further increase in the loading amount of Bi nanospheres,the photoreactivity of Bi/Bi2WO6 hybridized photocatalyst begins to decrease,possibly due to the light filtering by the Bi nanospheres.The enhanced visible photoreactivity of Bi/Bi2WO6 towards NO abatement was attributed to surface plasmon resonance driven interfacial charge separation.The excellent stability of Bi/Bi2WO6 hybridized photocatalyst towards NO oxidation demonstrates its potential for applications such as air purification.
文摘The fabrication of S-scheme heterojunctions has received considerable attention as an effective approach to promote the separation and migration of photoexcited electron/hole pairs and retain strong redox abilities.Herein,an imine-based porous covalent organic framework(COF-LZU1)is integrated with controllably fabricated Cd S hollow cubes,resulting in the formation of an S-scheme heterojunction.When the COF content reaches 1.5 wt%,the COF/Cd S heterostructure(1.5%COF/Cd S)achieves the highest hydrogen generation rate of 8670μmol·h^(-1)·g^(-1),which is approximately 2.1 times higher than that of pure Cd S.The apparent quantum efficiency(AQE)of 1.5%COF/Cd S is approximately 8.9%at 420 nm.Further systematic analysis shows that the intimate contact interface and suitable energy band structures between Cd S and COF can induce the formation of an internal electric field at the heterojunction interface,which can effectively drive the spatial separation of photoexcited charge carriers and simultaneously maintain a strong redox ability,thus enhancing the photocatalytic H_(2) evolution performance.
文摘Modification of nickel sulfide cocatalysts is considered to be a promising approach for efficient enhancement of the photocatalytic hydrogen production performance of g-C3N4.Providing more NiS cocatalyst to function as active sites of g-C3N4 is still highly desirable.To realize this goal,in this work,a facile sulfur-mediated photodeposition approach was developed.Specifically,photogenerated electrons excited by visible light reduce the S molecules absorbed on g-C3N4 surface to S^2‒,and subsequently NiS cocatalyst is formed in situ on the g-C3N4 surface by a combination of Ni2+and S2‒due to their small solubility product constant(Ksp=3.2×10^‒19).This approach has several advantages.The NiS cocatalyst is clearly in situ deposited on the photogenerated electron transfer sites of g-C3N4,and thus provides more active sites for H2 production.In addition,this method utilizes solar energy with mild reaction conditions at room temperature.Consequently,the synthesized NiS/g-C3N4 photocatalyst achieves excellent hydrogen generation performance with the performance of the optimal sample(244μmol h^‒1 g^‒1)close to that of 1 wt%Pt/g-C3N4(316μmol h^‒1 g^‒1,a well-known excellent photocatalyst).More importantly,the present sulfur-mediated photodeposition route is versatile and facile and can be used to deposit various metal sulfides such as CoSx,CuSx and AgSx on the g-C3N4 surface,and all the resulting metal sulfide-modified g-C3N4 photocatalysts exhibit improved H2-production performance.Our study offers a novel insight for the synthesis of high-efficiency photocatalysts.
基金supported by the National Natural Science Foundation of China(51672312,21373275)the Fundamental Research Funds for the Central Universities,South-Central University for Nationalities(CZT19006)~~
文摘Hierarchically structured nanomaterials have attracted much attention owing to their unique properties.In this study,TiO2 nanofibers assembled from nanosheets(TiO2-NFs-NSs)were fabricated through electrospinning technique,which was followed by hydrothermal treatment in NaOH solution.The effect of hydrothermal reaction time(0-3 h)on the structure and properties of TiO2 nanofibers(TiO2-NFs)was systematically studied,and TiO2-NFs was evaluated in terms of the photocatalytic activity toward photocatalytic oxidation of acetone and the photoelectric conversion efficiency of dye-sensitized solar cells.It was found that(1)hydrothermal treatment of TiO2-NFs in NaOH solution followed by acid washing and calcination results in the formation of TiO2-NFs-NSs;(2)upon extending the hydrothermal reaction time from 0 h to 3 h,the BET surface area of TiO2-NFs-NSs(T3.0 sample)increases 3.8 times(from 28 to 106 m2 g^-1),while the pore volume increases 6.0 times(from 0.09 to 0.54 cm3 g^-1);(3)when compared with those of pristine TiO2-NFs(T0 sample),the photoreactivity of the optimized TiO2-NFs-NSs toward acetone oxidation increases 3.1 times and the photoelectric conversion efficiency increases 2.3 times.The enhanced photoreactivity of TiO2-NFs-NSs is attributed to the enlarged BET surface area and increased pore volume,which facilitate the adsorption of substrate and penetration of gas,and the unique hollow structure of TiO2-NFs-NSs,which facilitates light harvesting through multiple optical reflections between the TiO2 nanosheets.
文摘Photocatalysis has become a focal point in research as a clean and sustainable technology with the potential to solve environmental problems and energy crises.The loading of noble-metal co-catalysts can substantially improve the photocatalytic efficiency of semiconductors.Because the high cost and scarcity of noble metals markedly limit their large-scale applications,finding a noble-metal-alternative co-catalyst is crucial.MXene,a novel 2D transition metal material,has attracted considerable attention as a promising substitute for noble metal co-catalysts owing to its cost-efficiency,unique 2D layered structure,and excellent electrical,optical,and thermodynamic properties.This review focuses on the latest advancements in research on MXenes as co-catalysts in relatively popular photocatalytic applications(hydrogen production,CO2 reduction,nitrogen fixation,and organic pollutant oxidation).The synthesis methods and photocatalytic mechanisms of MXenes as co-catalysts are also summarized according to the type of MXene-based material.Finally,the crucial opportunities and challenges in the prospective development of MXene-based photocatalysts are outlined.We emphasize that modern techniques should be used to demonstrate the effects of MXenes on photocatalysis and that the photocatalytic activity of MXene-based photocatalysts can be further improved using defective engineering and recent phenomena such as the localized surface plasmon resonance effect and single-atom catalysis.
基金Project(2016YFB0301100)supported by the National Key R&D Program of ChinaProject(51804277)supported by the National Natural Science Foundation of ChinaProject(2018ZE007)supported by the Rare and Precious Metal Materials Genome Engineering Project of Yunnan Province,China。
文摘The investigation of silicothermic reduction of CaO·MgO was carried out using a self-developed thermogravimetric analysis(TGA)instrument under vacuum and high temperature conditions.The TG data of pellets prepared with calcined dolomite,ferrosilicon and fluorite were determined at the heating rates of 1.5,2.0,2.5 and 3.0℃/min in 5 Pa vacuum at 300−1400℃,respectively.Model-free analysis and model-based analysis were applied for simulating the kinetic mechanism.By analyzing the characteristics of the initial and final reaction temperatures of TG curve,ratio of half-width of derivative TG curve and kinetic parameters,a conclusion was made that the most probable mechanism function is the first order formal chemical reaction with activation energy of 233.42 kJ/mol and pre-exponential factor of 5.14×1010 s−1.This study provides the basic data of dynamics of silicothermic magnesium production under vacuum conditions.
文摘Electrochemical CO2 reduction is a promising strategy for the utilization of CO2 and intermittent excess electricity.Cu is the only single metal catalyst that can electrochemically convert CO2 into multicarbon products.However,Cu exhibits an unfavorable activity and selectivity for the generation of C2 products because of the insufficient amount of CO*provided for the C‐C coupling.Based on the strong CO2 adsorption and ultrafast reaction kinetics of CO*formation on Pd,an intimate CuPd(100)interface was designed to lower the intermediate reaction barriers and improve the efficiency of C2 product formation.Density functional theory(DFT)calculations showed that the CuPd(100)interface enhanced the CO2 adsorption and decreased the CO2*hydrogenation energy barrier,which was beneficial for the C‐C coupling.The potential‐determining step(PDS)barrier of CO2 to C2 products on the CuPd(100)interface was 0.61 eV,which was lower than that on Cu(100)(0.72 eV).Encouraged by the DFT calculation results,the CuPd(100)interface catalyst was prepared by a facile chemical solution method and characterized by transmission electron microscopy.CO2 temperature‐programmed desorption and gas sensor experiments further confirmed the enhancement of the CO2 adsorption and CO2*hydrogenation ability of the CuPd(100)interface catalyst.Specifically,the obtained CuPd(100)interface catalyst exhibited a C2 Faradaic efficiency of 50.3%±1.2%at‒1.4 VRHE in 0.1 M KHCO3,which was 2.1 times higher than that of the Cu catalyst(23.6%±1.5%).This study provides the basis for the rational design of Cu‐based electrocatalysts for the generation of multicarbon products by fine‐tuning the intermediate reaction barriers.
文摘The active site amount of photocatalysts,being the key factors in photocatalytic reactions,directly affects the photocatalytic performance of the photocatalyst.Pristine graphitic carbon nitride(g‐C_(3)N_(4))exhibits moderate photocatalytic activity due to insufficient active sites.In this study,cyano‐modified porous g‐C_(3)N_(4)nanosheets(MCN‐0.5)were synthesized through molecular self‐assembly and alkali‐assisted strategies.The cyano group acted as the active site of the photocatalytic reaction,because the good electron‐withdrawing property of the cyano group promoted carrier separation.Benefiting from the effect of the active sites,MCN‐0.5 exhibited significantly enhanced photocatalytic activity for CO2 reduction under visible light irradiation.Notably,the photocatalytic activity of MCN‐0.5 was significantly reduced when the cyano groups were removed by hydrochloric acid(HCl)treatment,further verifying the role of cyano groups as active sites.The photoreduction of Pt nanoparticles provided an intuitive indication that the introduction of cyano groups provided more active sites for the photocatalytic reaction.Furthermore,the controlled experiments showed that g‐C_(3)N_(4)grafted with cyano groups using melamine as the precursor exhibited enhanced photocatalytic activity,which proved the versatility of the strategy for enhancing the activity of g‐C_(3)N_(4)via cyano group modification.In situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations were used to investigate the mechanism of enhanced photocatalytic activity for CO2 reduction by cyano‐modified g‐C_(3)N_(4).This work provides a promising route for promoting efficient solar energy conversion by designing active sites in photocatalysts.