针对激光熔覆过程中熔覆层深度无法精确控制问题,提出了基于海洋捕食者(Marine Predators Algorithm,MPA)优化的误差反向传播算法(Error Back Propagation,BP)单道激光熔覆熔深预测模型,以激光功率、扫描速度和送粉速率作为自变量,熔深...针对激光熔覆过程中熔覆层深度无法精确控制问题,提出了基于海洋捕食者(Marine Predators Algorithm,MPA)优化的误差反向传播算法(Error Back Propagation,BP)单道激光熔覆熔深预测模型,以激光功率、扫描速度和送粉速率作为自变量,熔深作为因变量对模型进行评估。通过将该模型结果与PSO-BP、SOA-BP和SSA-BP神经网络的试验结果进行对比,发现MPA-BP预测模型的平均绝对误差为7.414%,拟合优度为0.964,相关数据的试验结果均优于其他模型,表明基于MPA优化的BP神经网络对熔深预测具有更好的稳定性和预测精度。展开更多
文摘针对激光熔覆过程中熔覆层深度无法精确控制问题,提出了基于海洋捕食者(Marine Predators Algorithm,MPA)优化的误差反向传播算法(Error Back Propagation,BP)单道激光熔覆熔深预测模型,以激光功率、扫描速度和送粉速率作为自变量,熔深作为因变量对模型进行评估。通过将该模型结果与PSO-BP、SOA-BP和SSA-BP神经网络的试验结果进行对比,发现MPA-BP预测模型的平均绝对误差为7.414%,拟合优度为0.964,相关数据的试验结果均优于其他模型,表明基于MPA优化的BP神经网络对熔深预测具有更好的稳定性和预测精度。