本文对于积分from n=0 to 1 f(x,{Nx})dx带准确余项的渐近展开式from n=0 to 1 f(x,{Nx})dx=from n=0 to 1 from n=0 to 1f(x,y)dxdy+sum from k=1 to r 1/(k!) (1/N)~k from n=0 to 1[f^((k-1,0))(1,y)(?)_k(y-N)-f^((k-1,0))(O,y)B_k(...本文对于积分from n=0 to 1 f(x,{Nx})dx带准确余项的渐近展开式from n=0 to 1 f(x,{Nx})dx=from n=0 to 1 from n=0 to 1f(x,y)dxdy+sum from k=1 to r 1/(k!) (1/N)~k from n=0 to 1[f^((k-1,0))(1,y)(?)_k(y-N)-f^((k-1,0))(O,y)B_k(y)]dy-1/(r|)(1/N)~r from n=0 to 1 from n=0 to 1 f^((r,O))(x,y)(?)_r(y-Nx)dxdy给出了一种简捷的推导,这种推导只需普通的分析知识,无需用到Euler-Maclaurin求和公式及Bernoulli多项式的Raabe乘积定理。展开更多
文摘本文对于积分from n=0 to 1 f(x,{Nx})dx带准确余项的渐近展开式from n=0 to 1 f(x,{Nx})dx=from n=0 to 1 from n=0 to 1f(x,y)dxdy+sum from k=1 to r 1/(k!) (1/N)~k from n=0 to 1[f^((k-1,0))(1,y)(?)_k(y-N)-f^((k-1,0))(O,y)B_k(y)]dy-1/(r|)(1/N)~r from n=0 to 1 from n=0 to 1 f^((r,O))(x,y)(?)_r(y-Nx)dxdy给出了一种简捷的推导,这种推导只需普通的分析知识,无需用到Euler-Maclaurin求和公式及Bernoulli多项式的Raabe乘积定理。