The reaction H+SO_(2)→OH+SO is important in the combustion and atmospheric chemistry,as well as the interstellar medium.It also represents a typical complex-forming reaction with deep complexes,serving as an ideal ca...The reaction H+SO_(2)→OH+SO is important in the combustion and atmospheric chemistry,as well as the interstellar medium.It also represents a typical complex-forming reaction with deep complexes,serving as an ideal candidate for testing various kinetics theories and providing interesting reaction dynamical phenomena.In this work,we reported a quasiclassical trajectory study of this reaction on our previously developed accurate full-dimensional potential energy surface.The experimental thermal rate coefficients over the temperature range 1400 K≤T≤2200 K were well reproduced.For the reactant SO_(2)being sampled at the ground ro-vibrational state,the calculated integral cross sections increased slightly along the collision energy ranging from 31.0 kcal/mol to 40.0 kcal/mol,and then became essentially flat at the collision energy within 40.0−55.0 kcal/mol.The product angular distributions are almost symmetric with nearly identical backward-forward double peak structure.The products OH and SO vibrational state distributions were also analyzed.展开更多
The H+CH_(3) OH reaction,which plays an important role in combustion and the interstellar medium,presents a prototypical system with multiple channels.In this work,mode specific dynamics of different product channels ...The H+CH_(3) OH reaction,which plays an important role in combustion and the interstellar medium,presents a prototypical system with multiple channels.In this work,mode specific dynamics of different product channels is investigated theoretically on a recently developed reliable potential energy surface based on a large number of data points calculated at the level of UCCSD(T)-F12 a/AVTZ.It has been demonstrated that vibrational excitations of the O-H stretching motion,the torsional motion,the C-H stretching vibrations,show different infuences on the four product channels,H_(2)+CH_(3) O,H_(2)+CH_(2)OH,H_(2) O+CH_(3),and H+CH_(3) OH.This work is helpful for understanding the mode-specific dynamics and controlling the competition for complicated reactions with multiple product channels.展开更多
基金supported by the National Natural Science Foundation of China(No.21973009)Chongqing Municipal Natural Science Foundation(No.cstc2019jcyj-msxm X0087)。
文摘The reaction H+SO_(2)→OH+SO is important in the combustion and atmospheric chemistry,as well as the interstellar medium.It also represents a typical complex-forming reaction with deep complexes,serving as an ideal candidate for testing various kinetics theories and providing interesting reaction dynamical phenomena.In this work,we reported a quasiclassical trajectory study of this reaction on our previously developed accurate full-dimensional potential energy surface.The experimental thermal rate coefficients over the temperature range 1400 K≤T≤2200 K were well reproduced.For the reactant SO_(2)being sampled at the ground ro-vibrational state,the calculated integral cross sections increased slightly along the collision energy ranging from 31.0 kcal/mol to 40.0 kcal/mol,and then became essentially flat at the collision energy within 40.0−55.0 kcal/mol.The product angular distributions are almost symmetric with nearly identical backward-forward double peak structure.The products OH and SO vibrational state distributions were also analyzed.
基金supported by the National Natural Science Foundation of China(No.21973009)the Chongqing Municipal Natural Science Foundation(No.cstc2019jcyj-msxm X0087)the Venture and Innovation Support Program for Chongqing Overseas Returnees(No.cx2021071)。
文摘The H+CH_(3) OH reaction,which plays an important role in combustion and the interstellar medium,presents a prototypical system with multiple channels.In this work,mode specific dynamics of different product channels is investigated theoretically on a recently developed reliable potential energy surface based on a large number of data points calculated at the level of UCCSD(T)-F12 a/AVTZ.It has been demonstrated that vibrational excitations of the O-H stretching motion,the torsional motion,the C-H stretching vibrations,show different infuences on the four product channels,H_(2)+CH_(3) O,H_(2)+CH_(2)OH,H_(2) O+CH_(3),and H+CH_(3) OH.This work is helpful for understanding the mode-specific dynamics and controlling the competition for complicated reactions with multiple product channels.