期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SVM多分类技术的肌电辅助脑电智能轮椅控制系统 被引量:3
1
作者 张毅 祝翔 罗元 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第S2期73-76,共4页
针对单一脑电控制智能轮椅中信号识别率不高和系统稳定性低的问题,考虑到脑电传感器Emotiv能同时获取脑肌电信号,提出一个基于支持向量机(support vector machine,SVM)多分类技术的肌电信号(electromyography,EMG)辅助脑电信号(electroe... 针对单一脑电控制智能轮椅中信号识别率不高和系统稳定性低的问题,考虑到脑电传感器Emotiv能同时获取脑肌电信号,提出一个基于支持向量机(support vector machine,SVM)多分类技术的肌电信号(electromyography,EMG)辅助脑电信号(electroencephalogram,EEG)的轮椅控制系统。系统采用小波变换和阈值法分别对EEG和EMG进行特征提取,并对特征向量进行融合;然后,采用多分类SVM对信号进行分类,将分类结果作为智能轮椅的控制指令。实验证明,系统与单一脑电控制相比,动作识别率高,稳定性好。 展开更多
关键词 脑电信号 肌电信号 多分类支持向量机 智能轮椅控制系统
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部