期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于分组量化的高效超维计算分类方法
被引量:
1
1
作者
姚晓芳
田波
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第9期197-204,共8页
针对当前超维计算(hyperdimensional computing,HD)中大多数方法计算量大、效率低的问题,提出了一种基于分组量化的高效超维计算分类方法,在保证准确性的情况下提高HD模型的计算效率.该方法首先使用点积操作替代余弦相似度运算来降低HD...
针对当前超维计算(hyperdimensional computing,HD)中大多数方法计算量大、效率低的问题,提出了一种基于分组量化的高效超维计算分类方法,在保证准确性的情况下提高HD模型的计算效率.该方法首先使用点积操作替代余弦相似度运算来降低HD计算推理阶段的计算量;其次,考虑到查询超向量的相似度计算随着类数的增加而增加,设计了一个分组查询方案,通过检查类的子集来减少相似度计算;最后,使用双值2次幂的量化方式来消除推理阶段的乘法运算,进一步提高计算速度.实验结果表明,与其他HD计算模型相比,所提方法性能优良,在相同的精度水平下,明显降低了能耗和执行时间.
展开更多
关键词
类脑计算
超维计算
分组量化
计算效率
下载PDF
职称材料
题名
基于分组量化的高效超维计算分类方法
被引量:
1
1
作者
姚晓芳
田波
机构
铜仁学院大数据学院计算机科学系
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第9期197-204,共8页
基金
国家自然科学基金项目(61741214)
贵州省科技厅基础研究项目(黔科合基础[2020]1Y260)
铜仁市科技局项目(铜市科研[2018]17号).
文摘
针对当前超维计算(hyperdimensional computing,HD)中大多数方法计算量大、效率低的问题,提出了一种基于分组量化的高效超维计算分类方法,在保证准确性的情况下提高HD模型的计算效率.该方法首先使用点积操作替代余弦相似度运算来降低HD计算推理阶段的计算量;其次,考虑到查询超向量的相似度计算随着类数的增加而增加,设计了一个分组查询方案,通过检查类的子集来减少相似度计算;最后,使用双值2次幂的量化方式来消除推理阶段的乘法运算,进一步提高计算速度.实验结果表明,与其他HD计算模型相比,所提方法性能优良,在相同的精度水平下,明显降低了能耗和执行时间.
关键词
类脑计算
超维计算
分组量化
计算效率
Keywords
brain-Inspired computing
hyperdimensional computing
grouping quantization
computational efficiency
分类号
TP393 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于分组量化的高效超维计算分类方法
姚晓芳
田波
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2022
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部