期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于优化PSO-BP算法的耦合时空特征下地铁客流预测
被引量:
26
1
作者
惠阳
王永岗
+2 位作者
彭辉
侯淑倩
余强(指导)
《交通运输工程学报》
EI
CSCD
北大核心
2021年第4期210-222,共13页
为提高地铁客流预测的准确性,以西安地铁1号线为例,分析了地铁客流的耦合时空特征,提取了影响地铁客流变化的5个主要因素,包括节日、非节日、时间段、站点和天气,构建了反向传播(BP)神经网络,预测了地铁客流;利用引入自适应变异与均衡...
为提高地铁客流预测的准确性,以西安地铁1号线为例,分析了地铁客流的耦合时空特征,提取了影响地铁客流变化的5个主要因素,包括节日、非节日、时间段、站点和天气,构建了反向传播(BP)神经网络,预测了地铁客流;利用引入自适应变异与均衡惯性权重的粒子群优化(PSO)算法,优化了BP神经网络,形成了考虑复杂因素影响的地铁客流预测系统;选取了换乘站、非换乘站的首站与中间站,引入天气、节日、非节日因素,对比了不同时间段下的BP神经网络模型,优化了PSO-BP神经网络模型的预测误差。研究结果表明:考虑天气、节日、非节日因素,换乘站点分时段优化PSO-BP神经网络模型预测的平均绝对误差、均方根误差和平均绝对百分比误差,较不分时段的优化PSO-BP神经网络模型分别平均下降了40.13%、31.46%和23.89%,较分时段的BP神经网络模型分别平均下降了17.50%、17.86%和17.32%;非换乘站点分时段优化PSO-BP神经网络模型预测的平均绝对误差、均方根误差和平均绝对百分比误差,较不分时段的优化PSO-BP神经网络模型分别平均下降了16.50%、20.99%和32.59%,较分时段的BP神经网络模型分别平均下降了11.48%、12.10%和17.73%;各站点分时段优化PSO-BP神经网络模型预测的平均绝对误差、均方根误差、平均绝对百分比误差,较不分时段的优化PSO-BP神经网络模型分别平均下降了24.37%、24.48%和29.69%,较分时段的BP神经网络模型分别平均下降了13.49%、14.02%和17.59%,因此,利用考虑多影响因素的优化PSO-BP神经网络模型能提高地铁客流预测的准确性。
展开更多
关键词
城市轨道交通
客流预测
耦合时空特征
反向传播神经网络
粒子群优化算法
自适应变异
惯性权重
原文传递
题名
基于优化PSO-BP算法的耦合时空特征下地铁客流预测
被引量:
26
1
作者
惠阳
王永岗
彭辉
侯淑倩
余强(指导)
机构
长安大学
长安大学交通软科学研究中心
西安市轨道
交通
集团有限公司
长安大学
出处
《交通运输工程学报》
EI
CSCD
北大核心
2021年第4期210-222,共13页
基金
国家自然科学基金项目(52072044)
陕西省自然科学基金项目(2021JQ-295)。
文摘
为提高地铁客流预测的准确性,以西安地铁1号线为例,分析了地铁客流的耦合时空特征,提取了影响地铁客流变化的5个主要因素,包括节日、非节日、时间段、站点和天气,构建了反向传播(BP)神经网络,预测了地铁客流;利用引入自适应变异与均衡惯性权重的粒子群优化(PSO)算法,优化了BP神经网络,形成了考虑复杂因素影响的地铁客流预测系统;选取了换乘站、非换乘站的首站与中间站,引入天气、节日、非节日因素,对比了不同时间段下的BP神经网络模型,优化了PSO-BP神经网络模型的预测误差。研究结果表明:考虑天气、节日、非节日因素,换乘站点分时段优化PSO-BP神经网络模型预测的平均绝对误差、均方根误差和平均绝对百分比误差,较不分时段的优化PSO-BP神经网络模型分别平均下降了40.13%、31.46%和23.89%,较分时段的BP神经网络模型分别平均下降了17.50%、17.86%和17.32%;非换乘站点分时段优化PSO-BP神经网络模型预测的平均绝对误差、均方根误差和平均绝对百分比误差,较不分时段的优化PSO-BP神经网络模型分别平均下降了16.50%、20.99%和32.59%,较分时段的BP神经网络模型分别平均下降了11.48%、12.10%和17.73%;各站点分时段优化PSO-BP神经网络模型预测的平均绝对误差、均方根误差、平均绝对百分比误差,较不分时段的优化PSO-BP神经网络模型分别平均下降了24.37%、24.48%和29.69%,较分时段的BP神经网络模型分别平均下降了13.49%、14.02%和17.59%,因此,利用考虑多影响因素的优化PSO-BP神经网络模型能提高地铁客流预测的准确性。
关键词
城市轨道交通
客流预测
耦合时空特征
反向传播神经网络
粒子群优化算法
自适应变异
惯性权重
Keywords
urban rail transit
passenger flow prediction
coupled spatial-temporal characteristic
back propagation neural network
particle swarm optimization algorithm
adaptive mutation
inertia weight
分类号
U293.13 [交通运输工程—交通运输规划与管理]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于优化PSO-BP算法的耦合时空特征下地铁客流预测
惠阳
王永岗
彭辉
侯淑倩
余强(指导)
《交通运输工程学报》
EI
CSCD
北大核心
2021
26
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部