文摘针对无人机长期跟踪过程中尺度变换导致目标丢失和跟踪精度低的问题,提出了一种基于飞蛾扑火优化(moth-flame optimization,MFO)的尺度比例感知空间长期跟踪器。首先,设计了高斯初始化以代替飞蛾扑火优化算法的随机初始化策略,降低优化算法在跟踪过程中的计算复杂度,减少算力浪费;其次,结合快速梯度直方图特征,构建了改进的飞蛾扑火优化跟踪器;然后,为了解决无人机航拍长期跟踪中目标尺度变化的问题,设计了一种自适应尺度变换的判别尺度空间跟踪(discriminative scale space tracking,DSST)算法,进一步提出了一种尺度比例感知空间跟踪器,解决了尺度滤波器中因长宽比固定而导致的跟踪漂移;同时,分析了滤波器响应峰值在各背景下的变化情况,提出了一种能反映环境变化下跟踪置信度的指标,并通过置信度将MFO优化跟踪框架与尺度比例感知空间跟踪器相结合,解决了尺度变化与长期跟踪目标丢失的问题;最后,在无人机长期跟踪数据集上开展了性能验证。结果表明:提出的算法可有效防止漂移现象的发生,提升跟踪效率;与目前跟踪领域中12种同类文献算法进行对比可知,提出的算法精度较高,满足实时性,能够有效解决无人机长期跟踪下的尺度变化及目标丢失等问题。