期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于卷积网络注意力机制的人脸表情识别
1
作者
郭昕刚
程超
沈紫琪
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2024年第8期2319-2328,共10页
针对表情识别时出现参数量大和识别能力弱等问题,提出一种基于卷积网络人脸表情识别方法。引入改进型残差模块,在减少参数量的同时增强对表情区域的关注;利用通道-空间注意力机制对网络提取的表情区域实现不同维度和位置上的权重分配,...
针对表情识别时出现参数量大和识别能力弱等问题,提出一种基于卷积网络人脸表情识别方法。引入改进型残差模块,在减少参数量的同时增强对表情区域的关注;利用通道-空间注意力机制对网络提取的表情区域实现不同维度和位置上的权重分配,专注于表情关键点中细微差别特征信息;利用细节模块进一步提取深度特征信息。为得到更高准确度,引入联合损失函数延长类外距离,缩短类内距离以提高表情识别准确度。本文将此网络运用到数据集FER2013、CK+中,实验结果表明:本算法平均识别率分别为63.91%、97.98%,参数量为11.34 M。与VGG网络、残差网络等对比,该模型不仅提高了识别率,还减少了冗余参数量。
展开更多
关键词
面部表情识别
残差模块
通道-空间注意力机制
细化模块
原文传递
题名
基于卷积网络注意力机制的人脸表情识别
1
作者
郭昕刚
程超
沈紫琪
机构
长春工业大学医学图像处理吉林省校企联合技术创新实验室
长春
工业
大学
计算机科学与工程学院
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2024年第8期2319-2328,共10页
基金
吉林省教育厅基金项目(JKH20210754KJ)
长春市科技局重大专项项目(21GD05)
吉林省科技厅重点攻关项目(20210201113GX).
文摘
针对表情识别时出现参数量大和识别能力弱等问题,提出一种基于卷积网络人脸表情识别方法。引入改进型残差模块,在减少参数量的同时增强对表情区域的关注;利用通道-空间注意力机制对网络提取的表情区域实现不同维度和位置上的权重分配,专注于表情关键点中细微差别特征信息;利用细节模块进一步提取深度特征信息。为得到更高准确度,引入联合损失函数延长类外距离,缩短类内距离以提高表情识别准确度。本文将此网络运用到数据集FER2013、CK+中,实验结果表明:本算法平均识别率分别为63.91%、97.98%,参数量为11.34 M。与VGG网络、残差网络等对比,该模型不仅提高了识别率,还减少了冗余参数量。
关键词
面部表情识别
残差模块
通道-空间注意力机制
细化模块
Keywords
facial expression recognition
residual module
channel-spatial attention module
refinement module
分类号
TP391 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于卷积网络注意力机制的人脸表情识别
郭昕刚
程超
沈紫琪
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2024
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部