针对南方丘陵地区针叶-阔叶混交林植被叶面积指数(leaf area index,LAI)反演精度低且研究较少的问题,本文提出了一种GLIBERTY-DSAIL耦合模型组合多元线性回归反演LAI的方法。本研究以GLIBERTY-DSAIL模型模拟光谱和植被实测高光谱为数据...针对南方丘陵地区针叶-阔叶混交林植被叶面积指数(leaf area index,LAI)反演精度低且研究较少的问题,本文提出了一种GLIBERTY-DSAIL耦合模型组合多元线性回归反演LAI的方法。本研究以GLIBERTY-DSAIL模型模拟光谱和植被实测高光谱为数据源,通过相关性分析,选取与LAI相关性高的植被指数作为反演因子,构建多元线性回归模型定量反演植被LAI并进行精度评定。结果表明:与LAI显著相关的RVI、DVI、GNDVI、MSAVI这4种植被指数作为反演因子,结合本文提出的组合模型反演LAI,模型预测决定系数R2为0.7086,均方根误差RMSE为0.3021,精度整体较高。该组合方法可较好地用于反演针叶-阔叶混交林植被LAI,为南方地区混交林LAI的研究提供新思路。展开更多
文摘针对南方丘陵地区针叶-阔叶混交林植被叶面积指数(leaf area index,LAI)反演精度低且研究较少的问题,本文提出了一种GLIBERTY-DSAIL耦合模型组合多元线性回归反演LAI的方法。本研究以GLIBERTY-DSAIL模型模拟光谱和植被实测高光谱为数据源,通过相关性分析,选取与LAI相关性高的植被指数作为反演因子,构建多元线性回归模型定量反演植被LAI并进行精度评定。结果表明:与LAI显著相关的RVI、DVI、GNDVI、MSAVI这4种植被指数作为反演因子,结合本文提出的组合模型反演LAI,模型预测决定系数R2为0.7086,均方根误差RMSE为0.3021,精度整体较高。该组合方法可较好地用于反演针叶-阔叶混交林植被LAI,为南方地区混交林LAI的研究提供新思路。