A brief overview of the past and present state of art in the field of H2S solid oxide fuel cell is presented.Electrochemical performance of a proton-conducting solid oxide fuel cell having the configuration of H2S,(M...A brief overview of the past and present state of art in the field of H2S solid oxide fuel cell is presented.Electrochemical performance of a proton-conducting solid oxide fuel cell having the configuration of H2S,(MoS2+NiS)/Li2SO4-Al2O3/Pt,air was investigated.The experimental results showed that electrolyte materials like Li2SO4-Al2O3, and anode substances such as MoS2+NiS showed good chemical stability under the operating conditions of a fuel cell using H2S as the fuel, and that binary metal sulfides such as MoS2+NiS as an anode catalyst was superior to a single metal sulfide of MoS2 which sublimes above 450 ℃, and better than Pt which could be detached and resulted in the degradation of anode due to the formation of PtS.The proton-conducting and cell performance was improved at elevated temperatures due to the increase of electrochemical reaction rate and the reduction of cell resistance.OCV values around 1.0 V were observed.The maximum current and power density values obtained at 600 ℃ were 20 mA·cm -2 and 4 mW· cm -2, and as high as 200 mA· cm -2 and 55 mW· cm -2 were achieved at 700 ℃, respectively.Three different anode catalysts, Pt, MoS2+NiS and MoS2+NiS+Ag were described.The conductance of cell increased and the cell performance was improved with Ag powder added to anode catalysts.Current density up to 250 mA· cm -2 and power density up to 70 mW· cm -2 were achieved with the anode catalyst MoS2+NiS+Ag compared to those with MoS2+NiS at 700 ℃.展开更多
文摘A brief overview of the past and present state of art in the field of H2S solid oxide fuel cell is presented.Electrochemical performance of a proton-conducting solid oxide fuel cell having the configuration of H2S,(MoS2+NiS)/Li2SO4-Al2O3/Pt,air was investigated.The experimental results showed that electrolyte materials like Li2SO4-Al2O3, and anode substances such as MoS2+NiS showed good chemical stability under the operating conditions of a fuel cell using H2S as the fuel, and that binary metal sulfides such as MoS2+NiS as an anode catalyst was superior to a single metal sulfide of MoS2 which sublimes above 450 ℃, and better than Pt which could be detached and resulted in the degradation of anode due to the formation of PtS.The proton-conducting and cell performance was improved at elevated temperatures due to the increase of electrochemical reaction rate and the reduction of cell resistance.OCV values around 1.0 V were observed.The maximum current and power density values obtained at 600 ℃ were 20 mA·cm -2 and 4 mW· cm -2, and as high as 200 mA· cm -2 and 55 mW· cm -2 were achieved at 700 ℃, respectively.Three different anode catalysts, Pt, MoS2+NiS and MoS2+NiS+Ag were described.The conductance of cell increased and the cell performance was improved with Ag powder added to anode catalysts.Current density up to 250 mA· cm -2 and power density up to 70 mW· cm -2 were achieved with the anode catalyst MoS2+NiS+Ag compared to those with MoS2+NiS at 700 ℃.