期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于EEG信号特征提取与SVM算法的睡眠自动分期
被引量:
1
1
作者
张章
周新淳
+1 位作者
赵鸿浩
张雪华
《计算机与数字工程》
2022年第5期936-941,共6页
传统凭借人工逐帧识别脑电信号来判断睡眠时期的方法耗费大量时间,效率低下;基于采集到的头部脑电信号引入模式识别的方法来完成自动分期的任务。利用小波阈值滤波对脑电信号进行预处理。采用小波包分解提取出每帧数据中四种节律波并计...
传统凭借人工逐帧识别脑电信号来判断睡眠时期的方法耗费大量时间,效率低下;基于采集到的头部脑电信号引入模式识别的方法来完成自动分期的任务。利用小波阈值滤波对脑电信号进行预处理。采用小波包分解提取出每帧数据中四种节律波并计算相应节律波能量值,以此作为分类特征。为了更好地适应非线性问题,还要提取非线性特征,计算每帧数据的排列熵和样本熵。划分出70%的数据作为训练集用于支持向量机的多分类器模型的分类训练,将训练完成的模型对测试集进行测试,得到了整体84.4%的准确率。提取的数据特征和支持向量机的多分类模型适用于解决脑电信号的睡眠分期任务,可以得到不错的准确率。
展开更多
关键词
脑电信号
睡眠分期
特征提取
支持向量机
下载PDF
职称材料
题名
基于EEG信号特征提取与SVM算法的睡眠自动分期
被引量:
1
1
作者
张章
周新淳
赵鸿浩
张雪华
机构
宝鸡
职业技术学院机电信息学院
宝鸡
文理学院物理与光电技术学院
陕西烽火通信集团有限公司宝鸡研发中心
出处
《计算机与数字工程》
2022年第5期936-941,共6页
基金
国家自然科学基金项目(编号:61871305)
陕西省科技厅自然科学基础研究计划青年项目(编号:2021JQ-125)资助。
文摘
传统凭借人工逐帧识别脑电信号来判断睡眠时期的方法耗费大量时间,效率低下;基于采集到的头部脑电信号引入模式识别的方法来完成自动分期的任务。利用小波阈值滤波对脑电信号进行预处理。采用小波包分解提取出每帧数据中四种节律波并计算相应节律波能量值,以此作为分类特征。为了更好地适应非线性问题,还要提取非线性特征,计算每帧数据的排列熵和样本熵。划分出70%的数据作为训练集用于支持向量机的多分类器模型的分类训练,将训练完成的模型对测试集进行测试,得到了整体84.4%的准确率。提取的数据特征和支持向量机的多分类模型适用于解决脑电信号的睡眠分期任务,可以得到不错的准确率。
关键词
脑电信号
睡眠分期
特征提取
支持向量机
Keywords
EEG signal
sleep staging
feature extraction
support vector machine
分类号
TP3 [自动化与计算机技术—计算机科学与技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于EEG信号特征提取与SVM算法的睡眠自动分期
张章
周新淳
赵鸿浩
张雪华
《计算机与数字工程》
2022
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部