期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
面向大规模优化问题的精英贡献两阶段动态分组算法
1
作者 王彬 张娇 +2 位作者 李薇 王晓帆 金海燕 《计算机工程》 CAS CSCD 北大核心 2024年第7期154-163,共10页
协同进化框架是解决大规模全局优化问题的有效方法,设计合理的决策变量分组方法是提高协同进化算法性能的关键,而利用精英决策变量动态构建精英子组件可以有效提高进化效率,但在进行大规模优化时,其可能将无关的变量分配到同一子组件,... 协同进化框架是解决大规模全局优化问题的有效方法,设计合理的决策变量分组方法是提高协同进化算法性能的关键,而利用精英决策变量动态构建精英子组件可以有效提高进化效率,但在进行大规模优化时,其可能将无关的变量分配到同一子组件,从而无法充分利用分组提高协同进化效率。针对该问题,提出一种精英贡献两阶段动态分组算法(EC-TSDG)。在分组前阶段,对变量进行随机分组,评估变量的贡献程度,从众多变量中寻找精英贡献变量;在分组后阶段,利用变量的相关关系寻找与精英决策变量存在相互作用的剩余变量,并将其合并形成精英子组件,使得精英子组件内部的变量两两相关,以此提高变量分组的准确性以及算法的收敛速度,避免子组件之间的相关干扰。最后,采用具有外部存档的自适应差分进化算法作为优化器进化各个子组件。在CEC'2013测试集上与其他先进算法进行比较,实验结果表明,EC-TSDG收敛速度快于对比算法,Friedman检验值为1.43,平均排序较对比的动态分组算法DCC平均提升36.78%。 展开更多
关键词 协同进化 大规模优化问题 两阶段动态分组 贡献信息 精英子组件
下载PDF
基于Nadam-TimeGAN和XGBoost的时序信号故障诊断方法
2
作者 黑新宏 高苗 +3 位作者 张宽 费蓉 邱原 姬文江 《通信学报》 EI CSCD 北大核心 2024年第4期185-200,共16页
为了提高故障诊断模型在数据不平衡场景下的诊断性能和模型泛化能力,提出了一种基于Nadam-TimeGAN和XGBoost的时序信号故障诊断方法。首先对比基于LSTM和GRU的TimeGAN模型,选取性能更优的GRU网络作为TimeGAN模型的组成单元,然后采用Nada... 为了提高故障诊断模型在数据不平衡场景下的诊断性能和模型泛化能力,提出了一种基于Nadam-TimeGAN和XGBoost的时序信号故障诊断方法。首先对比基于LSTM和GRU的TimeGAN模型,选取性能更优的GRU网络作为TimeGAN模型的组成单元,然后采用Nadam优化算法对TimeGAN模型的各组件进行优化,即构建Nadam-TimeGAN模型用以数据扩充,最后构建一个平衡的数据集输入XGBoost集成学习模型进行分类训练。实验选取转辙机动作电流数据集进行验证性实验,选取MFPT轴承数据集和CWRU轴承数据集进行泛化性实验,并与8种方法进行对比,结果表明,所提方法在准确率、召回率以及F1-score这3种评价指标上均高于其他方法,从而验证了所提方法在不平衡数据故障诊断方面的有效性和泛化性。 展开更多
关键词 时间序列生成对抗网络 Nesterov加速自适应矩估计 极致梯度提升 故障诊断 数据增强
下载PDF
基于时空间联合去噪的改进差分进化算法
3
作者 王彬 张鑫雨 金海燕 《计算机科学》 CSCD 北大核心 2024年第9期299-309,共11页
在工程问题的优化求解过程中,对个体的适应度评价可能会受到环境噪声的干扰,进而影响对种群进行合理的优胜劣汰操作,造成算法性能下降。为了对抗噪声环境的影响,提出了一种基于时空间联合去噪的改进差分进化算法(SEDADE)。根据适应度排... 在工程问题的优化求解过程中,对个体的适应度评价可能会受到环境噪声的干扰,进而影响对种群进行合理的优胜劣汰操作,造成算法性能下降。为了对抗噪声环境的影响,提出了一种基于时空间联合去噪的改进差分进化算法(SEDADE)。根据适应度排名将种群划分成两个子种群,对评价较差个体组成的子种群用分布估计算法(EDA)进化,采用高斯分布建模解空间,利用解空间中多个个体噪声的随机性抵消噪声影响;对评价较好个体组成的子种群用差分进化算法(DE)进化,并且引入基于时间的停滞重采样机制去噪,提高收敛精度。对时空间混合进化得到的两个子种群进行基于概率选择的EDA信息利用操作,利用EDA搜索得到的全局信息引导DE的搜索方向,避免陷入局部最优。在实验中使用了被零均值高斯噪声干扰的基准函数,可以发现SEDADE相比其他算法更具有竞争性,此外通过消融实验验证了所提算法包含的3个机制的有效性和合理性。 展开更多
关键词 差分进化 分布估计 噪声 重采样 混合进化 信息利用
下载PDF
基于路径模仿和SAC强化学习的机械臂路径规划算法 被引量:1
4
作者 宋紫阳 李军怀 +2 位作者 王怀军 苏鑫 于蕾 《计算机应用》 CSCD 北大核心 2024年第2期439-444,共6页
在机械臂路径规划算法的训练过程中,由于动作空间和状态空间巨大导致奖励稀疏,机械臂路径规划训练效率低,面对海量的状态数和动作数较难评估状态价值和动作价值。针对上述问题,提出一种基于SAC(Soft Actor-Critic)强化学习的机械臂路径... 在机械臂路径规划算法的训练过程中,由于动作空间和状态空间巨大导致奖励稀疏,机械臂路径规划训练效率低,面对海量的状态数和动作数较难评估状态价值和动作价值。针对上述问题,提出一种基于SAC(Soft Actor-Critic)强化学习的机械臂路径规划算法。通过将示教路径融入奖励函数使机械臂在强化学习过程中对示教路径进行模仿以提高学习效率,并采用SAC算法使机械臂路径规划算法的训练更快、稳定性更好。基于所提算法和深度确定性策略梯度(DDPG)算法分别规划10条路径,所提算法和DDPG算法规划的路径与参考路径的平均距离分别是0.8 cm和1.9 cm。实验结果表明,路径模仿机制能提高训练效率,所提算法比DDPG算法能更好地探索环境,使得规划路径更加合理。 展开更多
关键词 模仿学习 强化学习 SAC算法 路径规划 奖励函数
下载PDF
基于双重注意力机制的人群计数方法
5
作者 赵志强 马培红 黑新宏 《计算机应用》 CSCD 北大核心 2024年第9期2886-2892,共7页
针对复杂场景下人群计数问题中的尺度变化、背景干扰和部分遮挡等问题,在空洞卷积操作的基础上,提出一种基于双重注意力机制的空洞上下文卷积神经网络(DA-DCCNN)。首先,将VGG16中的卷积层作为特征提取器,获取人群图像抽象、深层的特征图... 针对复杂场景下人群计数问题中的尺度变化、背景干扰和部分遮挡等问题,在空洞卷积操作的基础上,提出一种基于双重注意力机制的空洞上下文卷积神经网络(DA-DCCNN)。首先,将VGG16中的卷积层作为特征提取器,获取人群图像抽象、深层的特征图;其次,利用空洞卷积构造空洞上下文模块(DCM)对不同层获取的特征进行连接,并引入空间注意力模块(SAM)和通道注意力模块(CAM)获取上下文信息;最后,组合欧氏距离和交叉熵构造损失函数,对网络预测注意力图和真实注意力图之间的差异进行度量。在ShanghaiTech、UCF_CC_50和UCF-QNRF 3个公开数据集上的实验结果表明,DA-DCCNN在有效获取图像的多尺度特征的同时,增强了对图像中重要区域和通道的感知能力,平均绝对误差(MAE)取得了相对最优的结果。基于双重注意力机制的特征融合网络能有效感知图像中的空间结构和局部特征,从而使得生成的密度图能更准确地对人群区域进行预测和计数。 展开更多
关键词 空洞卷积 上下文特征 双重注意力机制 密度图 人群计数
下载PDF
基于中文预训练的安全事件实体识别研究 被引量:1
6
作者 朱磊 董林靖 +4 位作者 黑新宏 王一川 彭伟 刘雁孝 盘隆 《信息安全研究》 2021年第7期652-660,共9页
为提高公共安全事件中中文命名实体识别的效率,对《中文突发事件语料库》进行研究,通过对预训练任务的优化和训练集的迁移学习,提出基于领域预训练的公共安全事件实体识别方法.首先,对预训练模型RoBERTa进行优化,更新安全领域词典,实现... 为提高公共安全事件中中文命名实体识别的效率,对《中文突发事件语料库》进行研究,通过对预训练任务的优化和训练集的迁移学习,提出基于领域预训练的公共安全事件实体识别方法.首先,对预训练模型RoBERTa进行优化,更新安全领域词典,实现数据增强,并将中文单字符的掩码机制替换为全词掩码机制,获取公共安全事件中领域实体特征和语义信息.接着,使用10万条在线新闻语料进行领域预训练,生成了公共安全领域预训练模型RoBERTa+,增强下游任务命名实体识别的能力.最后,采用双向长短时记忆网络BiLSTM获取语料文本的上下文信息特征,经过条件随机场CRF进行序列解码标注,完成公共安全领域的中文命名实体识别任务.实验结果表明,改进的模型在中文突发事件语料库中准确率平均可达到87%以上,召回率和F1值都达到了80%以上,从而证明了领域预训练可以有效提升公共安全事件中实体信息的识别能力. 展开更多
关键词 公共安全事件 中文实体识别 领域预训练 双向长短时记忆网络 条件随机场 RoBERTa预训练语言模型
下载PDF
基于Bi-LSTM+Attention公共安全危机识别 被引量:1
7
作者 王志晓 李卓淳 闫文耀 《计算机技术与发展》 2022年第4期134-139,共6页
公共安全危机对社会稳定和人权构成威胁,令人担忧。社交媒体上帖子的可用性使得公共安全危机更容易被探测。然而,手动浏览和分析大量可用帖子耗时且效率低下。鉴于深度学习技术在自然语言处理方面的优势,采用深度学习技术自动识别潜在... 公共安全危机对社会稳定和人权构成威胁,令人担忧。社交媒体上帖子的可用性使得公共安全危机更容易被探测。然而,手动浏览和分析大量可用帖子耗时且效率低下。鉴于深度学习技术在自然语言处理方面的优势,采用深度学习技术自动识别潜在的公共安全危机成为当前的迫切需求。文中以家庭暴力危机为例,将社交媒体Facebook上有关家庭暴力的英文帖子作为研究对象,通过Facebook GraphAPI获取后进行文本预处理。采用Word2vec方法构建词向量模型,使用Bi-LSTM+self-Attention(SA-BiLSTM)深度学习模型完成了家庭暴力危机识别任务,并与CNN、RNN(recurrent neural network,循环神经网络)、LSTM三个神经网络模型进行了比较。实验结果显示,CNN和LSTM模型表现明显好于RNN,与SA-BiLSTM模型表现相接近;同时,使用self-Attention机制后Bi-LSTM模型综合表现最好,F1值、召回率、准确率均最高,其中召回率和准确率超过90%。该研究成果将为使用深度学习技术自动探测公共安全危机问题提供参考和帮助。 展开更多
关键词 公共安全 社交媒体 家庭暴力 深度学习 文本挖掘
下载PDF
不良舆情话题在传播节点网络模型的演化规律研究 被引量:1
8
作者 魏嵬 孙雪松 +1 位作者 李林峰 王晨乐 《软件》 2022年第1期130-132,157,共4页
不良网络舆情是网络时代的一种重要舆论形态,反映了公众对突发事件的情绪表达,具有很强的社会影响力,需要及时处置和正确引导。本文分析了突发事件网络舆情的演化动力和影响因素,对不同阶段的舆情传播演化规律进行研究,并同步构建了网... 不良网络舆情是网络时代的一种重要舆论形态,反映了公众对突发事件的情绪表达,具有很强的社会影响力,需要及时处置和正确引导。本文分析了突发事件网络舆情的演化动力和影响因素,对不同阶段的舆情传播演化规律进行研究,并同步构建了网络舆情的传播模型,从而为做好舆情防控工作提供参考。 展开更多
关键词 网络舆情 传播节点 演化规律 突发事件
下载PDF
大数据时代高校负面网络舆情演化机理及应对机制 被引量:3
9
作者 魏嵬 李林峰 +1 位作者 孙雪松 王晨乐 《数字技术与应用》 2021年第12期1-4,共4页
网络舆情是指在互联网上传播的对社会问题的不同看法和舆论。大学生是使用网络的主力军,在对突出事件发表评论的过程中,也会伴随出现很多不真实和不理性的言论,形成负面舆情,给学校和社会造成一定的负面影响,如果处理不当,就会危害学校... 网络舆情是指在互联网上传播的对社会问题的不同看法和舆论。大学生是使用网络的主力军,在对突出事件发表评论的过程中,也会伴随出现很多不真实和不理性的言论,形成负面舆情,给学校和社会造成一定的负面影响,如果处理不当,就会危害学校的声誉,降低公众的认可与信任。大数据环境下对高校负面网络舆情的监管及正确引导是确保社会稳定、民族和谐的重要保证。因此高校要完善网络舆情的动态监控机制,挖掘突发事件信息传播与演化的机理,制定切实可行的应对措施,有效控制网络舆情发酵,营造良好的校园风气和网络环境。 展开更多
关键词 校园风气 网络舆情 民族和谐 突发事件信息 大数据时代 应对机制 互联网 负面舆情
下载PDF
基于协方差分析的合作协同进化差分进化算法 被引量:4
10
作者 王彬 任露 +1 位作者 王晓帆 曹雅娟 《通信学报》 EI CSCD 北大核心 2023年第1期189-199,共11页
在大规模高维优化问题中,随着决策变量数目的增加,协同进化算法在搜索全局最优解过程中容易陷入局部最优。基于此,提出了一种基于协方差分析的合作协同进化差分进化算法,在根据决策变量之间的相关性对优化问题进行分组之后,针对子组件... 在大规模高维优化问题中,随着决策变量数目的增加,协同进化算法在搜索全局最优解过程中容易陷入局部最优。基于此,提出了一种基于协方差分析的合作协同进化差分进化算法,在根据决策变量之间的相关性对优化问题进行分组之后,针对子组件内部变量之间的相关性会影响种群进化过程的现象,在对子组件优化的过程中,利用协方差计算种群分布的特征向量,通过坐标旋转消除变量之间的相关性,有效避免在种群搜索过程中陷入局部最优,同时加快了算法的寻优速度。在CEC2014测试函数集上进行了对比实验,实验结果表明,所提算法具有可行性。 展开更多
关键词 大规模优化问题 合作协同进化 相关性 协方差分析 差分进化
下载PDF
基于轨迹预测与冲突检测的自动驾驶碰撞检测模型 被引量:1
11
作者 费蓉 马梦阳 +3 位作者 张晓 黑新宏 徐庆征 邱原 《计算机工程》 CAS CSCD 北大核心 2023年第7期10-20,46,共12页
轨迹预测和碰撞检测是自动驾驶的关键技术,可以提高自动驾驶系统对周围环境的感知能力,保障自动驾驶系统的安全性。Conv-LSTM模型能够有效处理具有时空相关性的轨迹数据,具有良好的轨迹预测能力,但该模型在交通拥堵、复杂道路等复杂情... 轨迹预测和碰撞检测是自动驾驶的关键技术,可以提高自动驾驶系统对周围环境的感知能力,保障自动驾驶系统的安全性。Conv-LSTM模型能够有效处理具有时空相关性的轨迹数据,具有良好的轨迹预测能力,但该模型在交通拥堵、复杂道路等复杂情形下预测性能较差。提出一种基于行驶意图识别的轨迹预测模型。通过基于长短期记忆(LSTM)网络的行驶意图识别模块对车辆的行驶意图进行预测,基于Conv-LSTM构建轨迹预测模块,结合识别的行驶意图信息预测未来轨迹,从而提高轨迹预测的精度和可解释性。引入2种注意力机制对目标对象及其周围车辆的历史轨迹信息进行重要性分析,使模型关注最具有代表性的邻居车辆,并且更好地捕捉不同时间步之间的关系,从而提高模型的预测准确度和稳定性。针对有向包围盒碰撞检测算法执行效率低的问题,提出一种基于混合包围盒的碰撞检测算法,通过最小安全距离和最大冲突距离进行碰撞预判断,避免非冲突情况下有向包围盒的创建和基于分离轴定理的碰撞检测过程,从而提高碰撞检测的效率。在NGSIM数据集上进行实验,结果表明:该模型的均方根误差优于Conv-LSTM、sys-Conv等对比模型,轨迹预测的精度更高;与有向包围盒(OBB)算法、轴对齐包围盒(AABB)算法和AABB-OBB算法相比,基于混合包围盒的碰撞检测算法平均碰撞检测时间分别缩短了64.47%、53.88%和55.47%。 展开更多
关键词 轨迹预测 碰撞检测 自动驾驶 注意力机制 意图识别 混合包围盒
下载PDF
注意力引导的三流卷积神经网络用于微表情识别 被引量:1
12
作者 赵明华 董爽爽 +4 位作者 胡静 都双丽 石程 李鹏 石争浩 《中国图象图形学报》 CSCD 北大核心 2024年第1期111-122,共12页
目的微表情识别在心理咨询、置信测谎和意图分析等多个领域都有着重要的应用价值。然而,由于微表情自身具有动作幅度小、持续时间短的特点,到目前为止,微表情的识别性能仍然有很大的提升空间。为了进一步推动微表情识别的发展,提出了一... 目的微表情识别在心理咨询、置信测谎和意图分析等多个领域都有着重要的应用价值。然而,由于微表情自身具有动作幅度小、持续时间短的特点,到目前为止,微表情的识别性能仍然有很大的提升空间。为了进一步推动微表情识别的发展,提出了一种注意力引导的三流卷积神经网络(attention-guided three-stream convolutional neural network,ATSCNN)用于微表情识别。方法首先,对所有微表情序列的起始帧和峰值帧进行预处理;然后,利用TV-L1(total variation-L1)能量泛函提取微表情两帧之间的光流;接下来,在特征提取阶段,为了克服有限样本量带来的过拟合问题,通过3个相同的浅层卷积神经网络分别提取输入3个光流值的特征,再引入卷积块注意力模块以聚焦重要信息并抑制不相关信息,提高微表情的识别性能;最后,将提取到的特征送入全连接层分类。此外,整个模型架构采用SELU(scaled exponential linear unit)激活函数以加快收敛速度。结果本文在微表情组合数据集上进行LOSO(leave-one-subject-out)交叉验证,未加权平均召回率(unweighted average recall,UAR)以及未加权F1-Score(unweighted F1-score,UF1)分别达到了0.7351和0.7205。与对比方法中性能最优的Dual-Inception模型相比,UAR和UF1分别提高了0.0607和0.0683。实验结果证实了本文方法的可行性。结论本文方法所提出的微表情识别网络,在有效缓解过拟合的同时,也能在小规模的微表情数据集上达到先进的识别效果。 展开更多
关键词 微表情识别 光流 三流卷积神经网络 卷积块注意力模块(CBAM) SELU激活函数
原文传递
基于NSGA-Ⅱ的自适应多尺度特征通道分组优化算法
13
作者 王彬 向甜 +1 位作者 吕艺东 王晓帆 《计算机应用》 CSCD 北大核心 2023年第5期1401-1408,共8页
针对轻量型卷积神经网络(LCNN)的精确度和复杂度均衡优化问题,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的自适应多尺度特征通道分组优化算法对LCNN特征通道分组结构进行优化。首先,将LCNN中的特征融合层结构的复杂度最小化和精确度最... 针对轻量型卷积神经网络(LCNN)的精确度和复杂度均衡优化问题,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的自适应多尺度特征通道分组优化算法对LCNN特征通道分组结构进行优化。首先,将LCNN中的特征融合层结构的复杂度最小化和精确度最大化作为两个优化目标,进行双目标函数建模及理论分析;然后,设计基于NSGA-Ⅱ的LCNN结构优化框架,并在原始LCNN结构的深度卷积层之上增加基于NSGA-Ⅱ的自适应分组层,构建基于NSGA-Ⅱ的自适应多尺度的特征融合网络NSGA2-AMFFNetwork。在图像分类数据集上的实验结果显示,与手工设计的网络结构M_blockNet_v1相比,NSGA2-AMFFNetwork的平均精确度提升了1.2202个百分点,运行时间降低了41.07%。这表明所提优化算法能较好平衡LCNN的复杂度和精确度,同时还可为领域知识不足的普通用户提供更多性能表现均衡的网络结构选择方案。 展开更多
关键词 轻量型卷积神经网络 特征提取通道分组优化 双目标函数建模 快速非支配排序遗传算法 图像分类 进化算法
下载PDF
基于控制点特征学习的前列腺组织轮廓线提取方法
14
作者 金海燕 张锦 +5 位作者 王海鹏 肖照林 王刚 陈晶 张雨 白志明 《计算机技术与发展》 2023年第7期27-33,共7页
前列腺疾病检测和诊断的重要手段之一是分析核磁共振加权成像(T2 Weighted Imaging,T2WI)与弥散加权成像(Diffusion Weighted Imaging,DWI)的结果。对前列腺组织图像识别和标注的工作依赖医生经验且效率较低,大量就诊数据的高效高精度... 前列腺疾病检测和诊断的重要手段之一是分析核磁共振加权成像(T2 Weighted Imaging,T2WI)与弥散加权成像(Diffusion Weighted Imaging,DWI)的结果。对前列腺组织图像识别和标注的工作依赖医生经验且效率较低,大量就诊数据的高效高精度处理成为该领域一大挑战。目前,在T2WI图像上提取轮廓的深度学习图像分割算法已有报道,但在DWI图像上提取前列腺组织轮廓,仍存在边缘模糊导致的轮廓线提取难题。针对该问题,提出一种前列腺轮廓控制点的深度学习检测方法。与直接检测轮廓线不同,该文提出一种U型卷积神经网络对轮廓线控制点进行特征学习,以降低由不同患者前列腺轮廓差异导致的特征歧义性问题。在大量已标注数据集上,采用监督学习方式,提出一种结合控制点概率与空间分布的加权损失函数以优化神经网络收敛速度与检测性能。在控制点高精度检测的基础上,采用曲线保凸拟合得到最终的前列腺组织轮廓线。在实验部分,采用前列腺就诊临床数据测试了所提方法的性能,并与直接检测轮廓线方法、多种经典图像分割方法进行了对比。在实验数据的测试结果表明,该方法在相似性系数指标及豪斯多夫距离指标等方面优于现有其他医学网络分割方法。此外,该方法由于仅学习轮廓控制点,因此其在小样本数据集上的学习能力显著优于直接检测轮廓线的深度学习方法。 展开更多
关键词 前列腺组织 弥散加权成像 控制点学习 U-Net网络 特征学习
下载PDF
基于关键点精确配对的点云曲面匹配方法
15
作者 宁小娟 李春旭 +3 位作者 王嘉豪 唐婧 王映辉 金海燕 《系统仿真学报》 CAS CSCD 北大核心 2023年第6期1169-1182,共14页
针对基于特征的点云曲面匹配方法在关键点匹配时匹配效率低和精度不够的问题,提出了一种基于关键点精确配对的点云曲面匹配方法。通过采用基于曲率信息的改进3D-SIFT(3D scaleinvariant feature transform)算法,提取点云数据的关键点;... 针对基于特征的点云曲面匹配方法在关键点匹配时匹配效率低和精度不够的问题,提出了一种基于关键点精确配对的点云曲面匹配方法。通过采用基于曲率信息的改进3D-SIFT(3D scaleinvariant feature transform)算法,提取点云数据的关键点;将关键点处的FPFH(fast point feature histograms)特征描述以及模型中心点到关键点的向量与模型主趋势的夹角作为约束条件,获取精确的关键点匹配点对集合;求解刚体变换参数实现模型曲面的初始匹配;使用ICP(iterative closest point)算法进行二次优化,实现模型曲面的精确匹配。实验表明:该方法既能解决关键点匹配精度问题,又能很好地解决匹配效率的问题。 展开更多
关键词 尺度不变特征变换 快速点特征直方图 主趋势 刚体变换参数 迭代最近点
下载PDF
隐特征监督的孪生网络弱光光流估计
16
作者 肖照林 苏展 +1 位作者 左逢源 金海燕 《中国图象图形学报》 CSCD 北大核心 2024年第1期231-242,共12页
目的弱光照条件下成像存在信噪比低、运动模糊等问题,这对光流估计带来了极大挑战。与现有“先增强—再估计”的光流估计方法不同,为了避免在弱光图像增强阶段损失场景的运动信息,提出一种隐特征监督的弱光光流估计孪生网络学习方法。... 目的弱光照条件下成像存在信噪比低、运动模糊等问题,这对光流估计带来了极大挑战。与现有“先增强—再估计”的光流估计方法不同,为了避免在弱光图像增强阶段损失场景的运动信息,提出一种隐特征监督的弱光光流估计孪生网络学习方法。方法首先,该方法采用权重共享的孪生网络提取可映射的弱光光流和正常光照光流特征;进而,计算弱光邻帧图像的K近邻相关性卷表,以解决计算4D全对相关性卷表的高时空复杂度问题;在全局运动聚合模块中引入针对二维运动特征的注意力机制,以降低弱光条件下强噪声、运动模糊及低对比度对光流估计的不利影响。最后,提出隐特征监督的光流估计模块,采用正常光照光流特征监督弱光照光流特征的学习,实现高精度的光流估计。结果与3种最新光流估计方法的对比实验表明,在正常光照条件下,本文方法取得了与现有最佳光流估计方法相近的性能。在FCDN(flying chairs dark noise)数据集上,本文方法光流估计性能最优,相较于次优方法端点误差精度提升了0.16;在多亮度光流估计(various brightness optical flow,VBOF)数据集上,本文方法端点误差精度提升了0.08。结论本文采用权重共享的双分支孪生网络,实现了对正常光照和弱光照光流特征的准确编码,并采用监督学习方式实现了高精度的弱光照光流估计。实验结果表明,本文方法在弱光光流估计精度及泛化性方面均具有显著优势。本文代码可在https://github.com/suzhansz/LLCV-net.git下载。 展开更多
关键词 光流估计 孪生网络 相关性卷表 全局运动聚合 弱光图像增强
原文传递
室内场景中密集小目标的人数统计方法
17
作者 张杰 李张琦 +6 位作者 金海燕 王彬 康孟飞 侯继鑫 杜海鹏 李睿 潘志庚 《中国有线电视》 2023年第12期25-29,共5页
计算机视觉任务中,密集小目标的人数统计在人群行为分析、资源优化配置、现代安防等室内场景中具有重要的社会意义。现有的密集小目标统计方法存在着诸如目标相互遮挡造成的漏检、检测目标密集产生的错检以及目标小且人脸特征提取不足... 计算机视觉任务中,密集小目标的人数统计在人群行为分析、资源优化配置、现代安防等室内场景中具有重要的社会意义。现有的密集小目标统计方法存在着诸如目标相互遮挡造成的漏检、检测目标密集产生的错检以及目标小且人脸特征提取不足等问题。针对室内场景中密集小目标的漏检、错检以及特征不足等问题,提出一种基于YOLOv5框架的人数统计模型STO-YOLO。该方法首先在YOLOv5的主干网络加入针对密集小目标的检测模块以提升特征提取能力,然后在特征融合Neck网络中加入小目标检测模块来增强特征融合能力,从而改善远离监控的密集小目标的错检问题;其次引入OTA机制,将标签分配视作最优传输问题,同时结合上下文信息来减少模糊框的个数,从而有效减少目标遮挡产生的误差。在实际教学场景中自建数据集并验证所提方法。实验结果表明,与SOTA方法YOLOv5相比,STO-YOLO检测结果的precision和recall指标均得到了显著提升;相比最新的YOLOv8,recall和mAP等指标也得到了提升,充分验证了所提STO-YOLO方法的有效性。 展开更多
关键词 智慧校园 YOLOv5 目标检测 人数统计
下载PDF
支持Web端的多场景学习模式的服务器控制方式及应用
18
作者 张杰 肖佳琦 +5 位作者 康孟飞 张鑫 张文馨 侯继鑫 杜海鹏 李睿 《中国有线电视》 2023年第12期35-39,共5页
随着新冠肺炎感染在全球范围内的持续发展以及局部地区的疫情反复,在线教育的学习模式得到进一步的深入推广和广泛应用。当前主流的在线教育模式主要通过专门的应用程序,如智慧树、雨课堂、云课堂以及腾讯会议等传统在线方式实现,目前... 随着新冠肺炎感染在全球范围内的持续发展以及局部地区的疫情反复,在线教育的学习模式得到进一步的深入推广和广泛应用。当前主流的在线教育模式主要通过专门的应用程序,如智慧树、雨课堂、云课堂以及腾讯会议等传统在线方式实现,目前还没有通过Web浏览器的B/S模式进行通信的免费、高质量的完整解决方案。研究当前在线学习系统中存在的依赖于专门App、学习模式单一、学习者之间互动性不足等问题,针对服务器上实现基于WebRTC的web-Skyclass系统。该系统通过不同的多媒体控制方式提供问答模式、论文答辩和课堂直播等多种实际场景的不同学习模式,为学习者提供文字、视频、音频的多种学习场景和互动方式。基于这些媒体控制设计了一个具有用户友好界面的系统,在此基础上进行实验以评估所提控制方式支持的系统的有效性和实用性。 展开更多
关键词 在线学习 Web方案 多种学习模式 多媒体播放控制 互动学习
下载PDF
基于多点交互的移动学习系统设计与实现
19
作者 张杰 张鑫 +5 位作者 肖佳琦 张文馨 李睿 康孟飞 侯继鑫 杜海鹏 《中国有线电视》 2023年第12期40-44,共5页
随着4G技术发展以及5G技术迅速兴起,网络通信技术已在移动终端得到深入应用,为移动学习带来新机遇,使移动学习成为移动互联网时代一种新型教育形式。移动学习不仅能够满足学习者随时随地进行学习需求,还能提高学生的学习兴趣和效率,成... 随着4G技术发展以及5G技术迅速兴起,网络通信技术已在移动终端得到深入应用,为移动学习带来新机遇,使移动学习成为移动互联网时代一种新型教育形式。移动学习不仅能够满足学习者随时随地进行学习需求,还能提高学生的学习兴趣和效率,成为未来不可或缺的学习模式之一。研究移动学习的挑战,并提出移动学习系统的框架。该系统包含五个模块,当学生登录进行身份验证时,可以选择录制的课程或加入实时课堂,并且采用各种互动学习方法,包括文本、视频和音频。设计一个具有用户友好界面的系统,在此基础上进行实验,以评估所提出系统的有效性。实验结果表明,该系统实现所提功能,并得到满意的结果,与现有移动学习应用相比,还可以支持点播在线学习、消息通知、学分信息查询、服务咨询等功能。 展开更多
关键词 移动学习 多媒体交互 移动安卓系统
下载PDF
多阶段粒子群优化算法求解容量约束p-中位问题 被引量:10
20
作者 王竹荣 薛伟 +2 位作者 黑新宏 费蓉 伊珍珍 《计算机学报》 EI CSCD 北大核心 2020年第6期1139-1160,共22页
容量约束p-中位问题(Capacitated P-Median Problem,CPMP)已被证明是一类计算机难以求解的具有NP-hard特性的组合优化问题.本文提出一种多阶段粒子群优化算法(Multi-Phase Particle Swarm Optimization,MPPSO)及在算法设计中应用模式有... 容量约束p-中位问题(Capacitated P-Median Problem,CPMP)已被证明是一类计算机难以求解的具有NP-hard特性的组合优化问题.本文提出一种多阶段粒子群优化算法(Multi-Phase Particle Swarm Optimization,MPPSO)及在算法设计中应用模式有关理论和方法.所提MPPSO在标准PSO基础上,考虑CPMP结构特征信息,采用一种以字符编码为基础的结构体编码结构,重新定义粒子速度与位置更新方式.它将CPMP优化求解分为种群粒子初始化阶段及两个优化阶段.在优化求解第一阶段,分析了惯性因子对所求问题编码结构粒子搜索的局限性,设计一种保留粒子最优特征中位点信息的变异算子.以粒子全局搜索算子操作为重点,期望从整个搜索空间搜索到好的模式结构分布特性的粒子.在优化求解第二阶段,对高适应性粒子执行一种改进的迭代局部搜索操作,达成对粒子精度的进一步提升.迭代局部搜索分为基本局部搜索和深层次局部搜索.基本局部搜索侧重对粒子需求点和中位点提炼用于发现候选粒子相邻的局部最优解.在深层次局部搜索中,采用对粒子执行扰动算子操作,使得算子操作在更大邻域范围内搜索粒子新的模式结构,从而发现蕴含高适应性模式结构的潜在更好解.文中提出模式范数及模式结构距离等概念,并将它们用于扰动算子设计.实验测试表明:MPPSO对4大类CPMP用例问题进行求解得到的实验数据,与4种文献对比算法提供的数据相比有一定优势,且能发现3个大数据集用例新的最好解. 展开更多
关键词 容量约束p-中位问题 粒子群优化算法 自适应变异算子 迭代局部搜索 模式分析方法
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部