期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的循环水养殖鳗鲡(Anguilla)计数研究
被引量:
1
1
作者
李凯
江兴龙
+3 位作者
陈尔康
陈彭
许志扬
林茜
《海洋与湖沼》
CAS
CSCD
北大核心
2022年第3期664-674,共11页
鳗鲡(Anguilla)作为我国优质水产养殖种类,精准掌握其数量对高效养殖有重要意义。为实现对循环水养殖鳗鲡的准确计数,提出了一种基于深度学习的改进Faster RCNN模型。针对检测目标即鳗鲡头部尺寸小的问题,选择在特征提取网络ResNet50中...
鳗鲡(Anguilla)作为我国优质水产养殖种类,精准掌握其数量对高效养殖有重要意义。为实现对循环水养殖鳗鲡的准确计数,提出了一种基于深度学习的改进Faster RCNN模型。针对检测目标即鳗鲡头部尺寸小的问题,选择在特征提取网络ResNet50中加入FPN结构来作为模型的骨干网络,以提取并融合多尺度的特征;针对原模型锚框都是基于人工经验设置的,并不适用于鳗鲡数据集的问题,使用k-means聚类算法对训练集中标注的鳗鲡头部检测框进行聚类分析,获得了适合鳗鲡数据集的15种不同尺度的锚框;针对图像中存在鳗鲡头部重叠的问题,选择使用Soft-NMS算法替代原NMS算法对RPN部分生成的候选框进行筛选,以减少模型对鳗鲡重叠部分的漏检情况。试验结果表明:改进后的Faster RCNN模型对鳗鲡头部的检测精度(mAP^(0.5))高达96.5%,较原Faster RCNN模型(Backbone为ResNet50)显著提升了14%,与SSD300和YOLOV3模型相比分别显著提升了24.9%和15%;在鳗鲡计数上,利用改进后的Faster RCNN模型检测结果进行计数,计数准确率达到90%以上,提升了模型对鳗鲡的检测识别能力。
展开更多
关键词
鳗鲡计数
深度学习
Faster
RCNN模型
FPN结构
K-MEANS聚类算法
Soft-NMS算法
下载PDF
职称材料
题名
基于深度学习的循环水养殖鳗鲡(Anguilla)计数研究
被引量:
1
1
作者
李凯
江兴龙
陈尔康
陈彭
许志扬
林茜
机构
集美大学
水产
学院
鳗鲡现代产业技术教育部
工程
研究中心
集美大学海洋与信息工程学院
出处
《海洋与湖沼》
CAS
CSCD
北大核心
2022年第3期664-674,共11页
基金
国家重点研发计划“特色鱼类精准高效养殖关键技术集成与示范”,2020YFD0900102号。
文摘
鳗鲡(Anguilla)作为我国优质水产养殖种类,精准掌握其数量对高效养殖有重要意义。为实现对循环水养殖鳗鲡的准确计数,提出了一种基于深度学习的改进Faster RCNN模型。针对检测目标即鳗鲡头部尺寸小的问题,选择在特征提取网络ResNet50中加入FPN结构来作为模型的骨干网络,以提取并融合多尺度的特征;针对原模型锚框都是基于人工经验设置的,并不适用于鳗鲡数据集的问题,使用k-means聚类算法对训练集中标注的鳗鲡头部检测框进行聚类分析,获得了适合鳗鲡数据集的15种不同尺度的锚框;针对图像中存在鳗鲡头部重叠的问题,选择使用Soft-NMS算法替代原NMS算法对RPN部分生成的候选框进行筛选,以减少模型对鳗鲡重叠部分的漏检情况。试验结果表明:改进后的Faster RCNN模型对鳗鲡头部的检测精度(mAP^(0.5))高达96.5%,较原Faster RCNN模型(Backbone为ResNet50)显著提升了14%,与SSD300和YOLOV3模型相比分别显著提升了24.9%和15%;在鳗鲡计数上,利用改进后的Faster RCNN模型检测结果进行计数,计数准确率达到90%以上,提升了模型对鳗鲡的检测识别能力。
关键词
鳗鲡计数
深度学习
Faster
RCNN模型
FPN结构
K-MEANS聚类算法
Soft-NMS算法
Keywords
eel counting
deep learning
Faster RCNN
FPN
k-means
Soft-NMS
分类号
Q959.9 [生物学—动物学]
S965 [农业科学—水产养殖]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的循环水养殖鳗鲡(Anguilla)计数研究
李凯
江兴龙
陈尔康
陈彭
许志扬
林茜
《海洋与湖沼》
CAS
CSCD
北大核心
2022
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部